Edith Cowan University Research Online

Research outputs 2014 to 2021

1-1-2018

The effect of WACO2 ratio on CO2 geo-sequestration efficiency in homogeneous reservoirs

Emad A. Al-Khdheeawi

Stephanie Vialle

Ahmed Barifcani

Mohammad Sarmadivaleh

Stefan Iglauer Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Engineering Commons

10.1016/j.egypro.2018.11.017

Al-Khdheeawi, E. A., Vialle, S., Barifcani, A., Sarmadivaleh, M., & Iglauer, S. (2018). The effect of WACO2 ratio on CO2 geo-sequestration efficiency in homogeneous reservoirs. *Energy Procedia*, 154, 100-105. Available here This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/7034

Available online at www.sciencedirect.com

Energy Procedia 154 (2018) 100-105

www.elsevier.com/locate/procedia

Applied Energy Symposium and Forum, Carbon Capture, Utilization and Storage, CCUS 2018, 27–29 June 2018, Perth, Australia

The effect of WACO₂ ratio on CO₂ geo-sequestration efficiency in homogeneous reservoirs

Emad A. Al-Khdheeawi^{a,b,*}, Stephanie Vialle^c, Ahmed Barifcani^a, Mohammad Sarmadivaleh^a, Stefan Iglauer^d

^aDepartment of Petroleum Engineering, Curtin University, 6151 Kensington, Western Australia, Australia
 ^bPetroleum Technology Department, University of Technology, Baghdad, Iraq
 ^cDepartment of Exploration Geophysics, Curtin University, 6151 Kensington, Western Australia, Australia
 ^dSchool of Engineering, Edith Cowan University, 6027 Joondalup, Western Australia, Australia

Abstract

Various factors such as reservoir temperature, wettability, caprock properties, vertical to horizontal permeability ratio, salinity, reservoir heterogeneity, injection well configuration affect the CO_2 geo-sequestration efficiency. Furthermore, it was previously investigated that CO_2 storage efficiency can be improved by using water alternating CO_2 (WACO₂) technology. However, the effect of the WACO₂ ratio (the ratio of the total amount of injected CO_2 to the total amount of injected water) on CO_2 storage efficiency has not been addressed adequately. Thus, in this paper, a 3D homogeneous reservoir simulation model has been developed to study the impact of the WACO₂ ratio on CO_2 mobility and CO_2 trapping capacity using five different WACO₂ ratios (i.e. 3, 2, 1, 1/2, and 1/3). For all WACO₂ ratios tested, 9000 kton (kt) of CO_2 were injected during 3 CO_2 injection cycles (2 years each) and at an injection rate of 1500 kt per year. Each CO_2 injection cycle was followed by a 2 years water injection cycle with injection rates of 500 kt/year, 750 kt/year, 1500 kt/year, 3000 kt/year, and 4500 kt/year for the 3, 2, 1, 1/2, and 1/3 WACO₂ ratios, respectively. Then, this 12 years WACO₂ injection period was followed by a 100 years post-injection period. Our results clearly indicate, after 100 years post-injection period, that the WACO₂ ratio has an important effect on the CO_2 migration distance, CO_2 mobility and CO_2 trapping capacity. The results demonstrate that lower WACO₂ ratio leads to reduce the vertical CO_2 plume migration and CO_2 mobility. Furthermore, low WACO₂ ratio enhances the capacities of capillary and solubility trapping mechanisms. Thus, we conclude that WACO₂ has a significant impact on the geo-sequestration efficiency and less WACO₂ ratios are preferable.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Selection and peer-review under responsibility of the scientific committee of the Applied Energy Symposium and Forum, Carbon Capture, Utilization and Storage, CCUS 2018.

1876-6102 $\ensuremath{\mathbb{C}}$ 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Selection and peer-review under responsibility of the scientific committee of the Applied Energy Symposium and Forum, Carbon Capture, Utilization and Storage, CCUS 2018. 10.1016/j.egypro.2018.11.017

^{*} Corresponding author. Tel.: +61451267416; fax: n/a *E-mail address:* e.al-khdheeawi@postgrad.curtin.edu.au; emad.reading@gmail.com

Keywords: WACO₂; Geo-sequestration; CO₂ storage; Trapping Capacity; Reservoir simulation

1. Introduction

 CO_2 capture and geological sequestration is considered an important technology to reduce CO_2 emission to the atmosphere by capturing the CO_2 form various sources and injecting it into deep geological reservoirs including unminable coal seams, hydrocarbon reservoirs, and saline aquifers [1]. However, due to the density difference between the injected CO_2 and formation water, CO_2 migrates upwards with a possible leaking back to the atmosphere [2]. This CO_2 leakage risk can be prevented by different trapping mechanisms including structural trapping [3], capillary trapping [4], dissolution trapping [5], and mineral trapping [6].

The storage efficiency of these geological trapping mechanisms is affected by different physical and geological parameter including CO₂ wettability [7-10], wettability heterogeneity [11], caprock characteristics [3], permeability anisotropy [12], permeability and porosity distribution [7], aquifer temperature [11], formation water salinity [13, 14]. Furthermore, CO₂ geo-sequestration efficiency can be enhanced by optimizing the CO₂ injection well configuration [15] and the CO₂ injection scenarios (e.g. WACO₂, intermittent injection, or continuous injection) [16-18]. Even though water alternating CO₂ (WACO₂) technology has been clearly addressed as an important method to improve the CO₂ geo-sequestration efficiency, the impact of the WACO₂ ratio on CO₂ geo-sequestration efficiency has not been investigated.

Thus, here, we investigated the impact of the WACO₂ ratio of the CO₂ plume migration distance, CO₂ mobility, capillary trapping capacity, and dissolution trapping capacity by building a 3D homogeneous reservoir simulation model and testing five different WACO₂ ratios: 3, 2, 1, 1/2, and 1/3.

2. Methodology

To study the influence of the WACO₂ ratio on CO₂ geo-sequestration efficiency, we have built a 3 dimensional homogeneous reservoir simulation model using TOUGH2-ECO2M [19, 20]. The model dimensions are 2000 × 2000 × 1500 m with regular and fine scale grids of $50 \times 50 \times 30$ in X, Y, Z directions, respectively (Figure 1). The model was homogeneous in terms of porosity (22%) and permeability with a horizontal permeability of 1000 mD and vertical permeability anisotropy (Kv/kh) of 10%. The aquifer model was initially completely saturated with water with an initial water saturation (Sw) of 100% and a formation water salinity of 15 wt% NaCl. The reservoir temperature was 343 K (isothermal) and the initial reservoir pressure at the bottom depth of the reservoir (2500 m) was 25 MPa. In addition, constant pressure boundary conditions have been applied to the model outer boundaries.

For all WACO₂ ratios tested, 9000 kt of CO₂ were injected at a depth of 2275 m during 3 CO₂ injection cycles (2 years each) and at an injection rate of 1500 kt per year. Each CO₂ injection cycle was followed by a 2 years water injection period at a depth of 2125 m with injection rates of 500 kt/year, 750 kt/year, 1500 kt/year, 3000 kt/year, and 4500 kt/year for the 3, 2, 1, 1/2, and 1/3 WACO₂ ratios, respectively. Then, this 12 years WACO₂ (6 years for CO₂ injection and 6 years for water injection) injection period was followed by a 100 years post-injection period.

Furthermore, for all tested WACO₂ ratios, the same pair of relative permeability and capillary pressure curves (intermediate-wet) has been used, for each injection cycle [7, 8]. The influence of the WACO₂ injection on the capillary pressure and relative permeability curves has been simulated based on previous experimental data (Figure 2) [21-23]. These relative permeability and capillary pressure curves have been imported into the developed model using Van Genuchten-Mualem model [24, 25]:

$$(P_{c}) = P_{i} \left([S^{*}]^{-1/\lambda} - 1 \right)^{1-\lambda}$$
(1)

$$k_{rg} = (1 - \hat{S})^2 (1 - \hat{S}^2)$$
 if $S_{gr} > 0$ (2)

$$k_{rg} = 1 - k_{rw} \quad \text{if} \quad S_{gr} = 0 \tag{3}$$

$$k_{rw} = 1 \quad \text{if} \quad S_w \ge S_{ws} \tag{4}$$

$$k_{rw} = \sqrt{S^*} \left\{ 1 - \left(1 - [S^*]^{1/\lambda} \right)^{\lambda} \right\}^2 \qquad \text{if} \quad S_w < S_{ws} \tag{5}$$

$$S^* = (S_w - S_{wr})/(S_{ws} - S_{wr}), \ \hat{S} = (S_w - S_{wr})/(1 - S_{wr} - S_{gr})$$
(6)

where: k_{rg} = gas relative permeability, k_{rw} = water relative permeability, S_{gr} = residual gas saturation, S_w = water saturation, S_{ws} = maximum water saturation, S_{wr} = residual water saturation, P_c = capillary pressure, P_i = capillary pressure scaling factor, and λ = pore size distribution index.

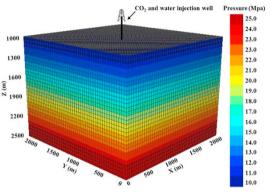


Fig.1 3D view of the developed reservoir model showing the model dimensions, reservoir pressure distribution and injection well location.

Fig.2 Relative permeability (left side) and capillary pressure (right side) curves for the three CO₂ and water injection cycles. Solid lines represent the CO₂ injection process and dashed lines represent the water injection process.

WACO ₂ ratio (CO ₂ mass/ water mass)	CO ₂ injection rate (kt/year)	Total injected CO ₂ (kt)	water injection rate (kt/year)	total injected water (kt)
1/3	1500	9000	4500	27000
1/2	1500	9000	3000	18000
1	1500	9000	1500	9000
2	1500	9000	750	4500
3	1500	9000	500	3000

Table 1. Amount of injected CO2 and water for the different WACO2 ratios.

3. Results and discussion

3.1. Effect of WACO₂ ratio on CO₂ migration

For all WACO₂ ratios, after the end of CO₂ and water injection cycles (12 years), the injection well was shutdown to simulate the CO₂ storage period (100 yeas). Figure 3 presents 2D views of the CO₂ plume through the center of the reservoir for the different WACO₂ ratios, at the end of the CO₂ storage period. By comparing the CO₂ plume migration distance for the different WACO₂ ratios (i.e. 3, 2, 1, 1/2, and 1/3), it is clear that the WACO₂ ratio affects the vertical CO₂ plume migration. The results show that increasing the WACO₂ ratio leads to increase the vertical CO₂ plume migration. For example, the shallowest depth reached by CO₂ plume was 1200 m for the 1/3 WACO₂ ratio at the end of the storage period (100 years), while it reached the top depth of the model (1000 m) after only 10 years storage time and then flowed horizontally beneath the top seal (Figure 3).

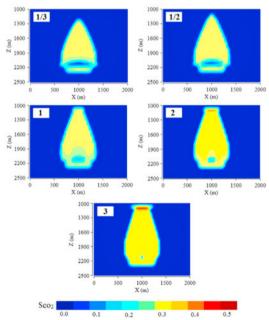


Fig. 3. 2D views of the CO₂ plume through the center of the storage reservoir for the different WACO₂ ratio.

*3.2. Effect of WACO*² *ratio on trapping capacity*

The solubility and capillary trapping capacities (Figure 4), and CO_2 mobility (free supercritical CO_2) (Figure 5) have been calculated as function of different WACO₂ ratios at the end of the storage period (100 years). The results

clearly show that the CO₂ trapping capacity and CO₂ mobility are highly affected by the WACO₂. The results indicated that reducing WACO₂ leads to a significant increasing in the solubility trapping capacity (e.g. the solubility trapping capacity was 1345 kt for the 3 WACO₂ ratio scenario, 1416 kt for the 2 WACO₂ ratio scenario, 1692 for the 1 WACO₂ ratio scenario, 2038 for the 1/2 WACO₂ ratio scenario, and 2493 for the 1/3 WACO₂ ratio scenario, after 100 years storage time; Figure 4). Furthermore, our results show that lower WACO₂ ratio enhances the capillary trapping capacity (e.g. the capillary trapping capacity was only 5470 kt in the 3 WACO₂ ratio model, while it was 6257 kt in the 1/3 WACO₂ ratio model, after 100 years post-injection time; Figure 4). Moreover, the results demonstrate that the CO₂ mobility is affected by the ratio of WACO₂ and that higher WACO₂ ratio leads to increase the amount of free supercritical CO₂ (e.g. the amount of free supercritical CO₂ (mobile CO₂) was increased from 250 kt to 2185 kt by increasing the WACO₂ ratio from 1/3 to 3, at the end of post-injection process; Figure 5). Thus, we conclude that WACO₂ ratio has a significant effect on CO₂ geo-sequestration and that lower WACO₂ ratio improves the geo-sequestration efficiency by reducing the volume of free supercritical CO₂ and enhancing the dissolution and capillary trapping capacities.

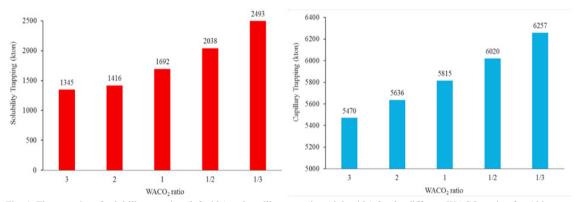


Fig. 4. The capacity of solubility trapping (left side) and capillary trapping (right side) for the different WACO₂ ratio after 100 years storage time.

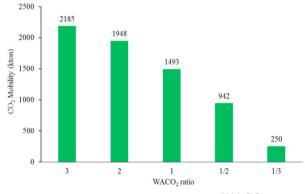


Fig. 5. The amount of free supercritical CO₂ (mobile CO₂) for the different WACO₂ ratio after 100 years storage time.

4. Conclusions

The capacity of CO_2 trapping mechanisms and underground CO_2 movement are influenced by various factors (e.g. CO_2 wettability, wettability heterogeneity, the properties of caprock, permeability anisotropy, permeability and porosity distribution, aquifer temperature, formation water salinity, and injection well configuration [3, 7-15].

Furthermore, Previous studies clearly showed that $WACO_2$ injection can improve the CO_2 trapping capacity and reduce the risk of CO_2 leakage [16-18]. However, the influence of the $WACO_2$ ratio on CO_2 geo-sequestration efficiency is not fully understood yet. Thus, in this paper, we have developed a 3D homogeneous reservoir simulation model to test five different $WACO_2$ ratios (ranging from 3 to 1/3).

Our simulation results clearly show that WACO₂ ratio has a noticeable effect on CO₂ trapping capacity and CO₂ movement. Our results demonstrate that decreasing WACO₂ ratio decreases the vertical CO₂ migration. In addition, the results show that reducing WACO₂ ratio can improve the solubility and dissolution trapping capacities. Thus, we conclude that WACO₂ has a significant impact on the CO₂ geo-sequestration efficiency and less WACO₂

References

ratios are preferable.

- Metz B, Davidson O, De Coninck H, Loos M, Meyer L. IPCC, 2005: IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, 442 pp 2005.
- [2] Hesse M, Tchelepi H, Cantwel B, Orr F. Gravity currents in horizontal porous layers: transition from early to late self-similarity. Journal of Fluid Mechanics 2007; 577:363-383.
- [3] Iglauer S, Pentland C, Busch A. CO₂ wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research 2015; 51(1):729-774.
- [4] Krevor S, Blunt M J, Benson S M, Pentland C H, Reynolds C, Al-Menhali A, Niu B. Capillary trapping for geologic carbon dioxide storage–From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control 2015; 40:221-237.
- [5] Emami-Meybodi H, Hassanzadeh H, Green C P, Ennis-King J. Convective dissolution of CO₂ in saline aquifers: Progress in modeling and experiments. International Journal of Greenhouse Gas Control 2015; 40:238-266.
- [6] Xu T, Apps J A, Pruess K. Reactive geochemical transport simulation to study mineral trapping for CO₂ disposal in deep arenaceous formations. Journal of Geophysical Research: Solid Earth 2003; 108(B2).
- [7] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Impact of reservoir wettability and heterogeneity on CO₂-plume migration and trapping capacity. International Journal of Greenhouse Gas Control 2017; 58:142-158.
- [8] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Influence of CO2-wettability on CO2 migration and trapping capacity in deep saline aquifers. Greenhouse Gases: Science and Technology 2017; 7(2):328-338.
- [9] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Influence of Rock Wettability on CO₂ Migration and Storage Capacity in Deep Saline Aquifers. Energy Procedia 2017; 114:4357-4365.
- [10] Iglauer S. CO2–Water–Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage. Accounts of Chemical Research 2017; 50(5):1134-1142.
- [11] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Effect of wettability heterogeneity and reservoir temperature on CO₂ storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control 2018; 68:216-229.
- [12] Kumar A, Noh M H, Ozah R C, Pope G A, Bryant S L, Sepehrnoori K, Lake L W. Reservoir simulation of CO₂ storage in deep saline aquifers. Spe Journal 2005; 10(03):336-348.
- [13] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Effect of brine salinity on CO₂ plume migration and trapping capacity in deep saline aquifers. The APPEA Journal 2017; 57(1):100-109.
- [14] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Zhang Y, Iglauer S. Impact of salinity on CO₂ containment security in highly heterogeneous reservoirs. Greenhouse Gases: Science and Technology 2017.
- [15] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Influence of injection well configuration and rock wettability on CO₂ plume behaviour and CO₂ trapping capacity in heterogeneous reservoirs. Journal of Natural Gas Science and Engineering 2017; 43:190-206.
- [16] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Impact of Injection Scenario on CO₂ Leakage and CO₂ Trapping Capacity in Homogeneous Reservoirs. in Offshore Technology Conference Asia. 2018. Offshore Technology Conference.
- [17] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Enhancement of CO₂ trapping efficiency in heterogeneous reservoirs by water-alternating gas injection. Greenhouse Gases: Science and Technology 2018. https://doi.org/10.1002/ghg.1805.
- [18] Al-Khdheeawi E A, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Impact of injected water salinity on CO₂ storage efficiency in homogenous reservoirs. The APPEA Journal 2018; 58:44-50.
- [19] Pruess K, Oldenburg C, Moridis G. TOUGH2 User's Guide Version 2. Lawrence Berkeley National Laboratory 1999.
- [20] Pruess K. ECO2M: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO₂, including super-and sub-critical conditions, and phase change between liquid and gaseous CO2. Lawrence Berkeley National Laboratory 2011.
- [21] Herring A L, Andersson L, Wildenschild D. Enhancing residual trapping of supercritical CO₂ via cyclic injections. Geophysical Research Letters 2016; 43(18):9677-9685.
- [22] Skauge A and Larsen J A. Three-phase relative permeabilities and trapped gas measurements related to WAG processes. in SCA 9421, proceedings of the International Symposium of the Society of Core Analysts, Stavanger, Norway. 1994.
- [23] Tokunaga T K and Wan J. Capillary pressure and mineral wettability influences on reservoir CO₂ capacity. Reviews in Mineralogy and Geochemistry 2013; 77(1):481-503.
- [24] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res 1976; 12(3):513-522.
- [25] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal 1980; 44(5):892-898.