Wetland vegetation monitoring, 2000/2001 (Salinity Action Plan)

B. Franke
R. Gurner
R. Froend

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

Part of the Environmental Sciences Commons

This Report is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/7084
Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study.

The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following:

- Copyright owners are entitled to take legal action against persons who infringe their copyright.

- A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth).

- Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Wetland Vegetation Monitoring 2000/2001 (Salinity Action Plan)

Prepared for the Department of Conservation and Land Management

By

B. Franke, R. Gurner and R. Froend
TABLE OF CONTENTS

Table of Contents	ii
List of Figures and Tables	iii
1.0 INTRODUCTION	1
1.1 Objectives	1
1.2 Scope and Approach	1
1.3 Outcomes	3
2.0 METHODS	4
2.1 TRANSECT SITE SELECTION	4
2.2 TRANSECT DESIGN	4
2.3 VEGETATION MONITORING	4
2.3.1 Tree Species	4
2.3.2 Understorey Species	5
2.4 PHYSICO-CHEMICAL PARAMETERS	6
3.0 RESULTS	7
3.1 LAKE BRYDE	7
3.1.1 Description	7
3.1.2 Plant Communities	7
3.1.3 Population Structure and Tree Vigour	7
3.1.4 Soil Characteristics	8
3.1.5 Summary	8
3.2 COOMALBIDGUP SWAMP	17
3.2.1 Description	17
3.2.2 Plant Communities	17
3.2.3 Population Structure and Tree Vigour	17
3.2.4 Soil Characteristics	18
3.2.5 Summary	18
3.3 LAKE COYRECUP	25
3.3.1 Description	25
3.3.2 Plant Communities	25
3.3.3 Population Structure and Tree Vigour	25
3.3.4 Soil Characteristics	27
3.3.5 Summary	27
3.4 LAKE KULIKUP	35
3.4.1 Description	35
3.4.2 Plant Communities	35
3.4.3 Population Structure and Tree Vigour	35
3.4.4 Soil Characteristics	36
3.4.5 Summary	36
3.5 LAKE NOOBUUP	44
3.5.1 Description	44
3.5.2 Plant Communities	44
3.5.3 Population Structure and Tree Vigour	44
3.5.4 Soil Characteristics	46
3.5.5 Summary	46
3.6 LAKE TOOLIBIN
3.6.1 Description 59
3.6.2 Plant Communities 59
3.6.3 Population Structure and Tree Vigour 59
3.6.4 Soil Characteristics 60
3.6.5 Summary 60

3.7 LAKE TOWERRINNING
3.7.1 Description 64
3.7.2 Plant Communities 64
3.7.3 Population Structure and Tree Vigour 64
3.7.4 Soil Characteristics 65
3.7.5 Summary 65

3.8 LAKE WHEATFIELD
3.8.1 Description 68
3.8.2 Plant Communities 68
3.8.3 Population Structure and Tree Vigour 68
3.8.4 Soil Characteristics 69
3.8.5 Summary 69

4.0 REFERENCES

5.0 APPENDICES
Appendix 1 EM38 Soil Conductivity Data (mS/cm) and Soil Field Assessments.
Appendix 2 Transect Overstorey Data
Appendix 3 Transect Understorey Data
Appendix 4 Understorey Species and Percentage Cover Comparisons, 1997 and 2000
LIST OF FIGURES AND TABLES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Transect Design</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Crown Assessment Procedure Diagrams (Ladd, 1996)</td>
<td>5</td>
</tr>
<tr>
<td>Table 3.1.1</td>
<td>Summary of Tree Data for Lake Bryde</td>
<td>7</td>
</tr>
<tr>
<td>Table 3.1.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Bryde Transects</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3.1.1</td>
<td>Size Class Distributions for Eucalyptus flocktoniae, Eucalyptus occidentalis, Eucalyptus kondininensis, Melaleuca strobophylla, Melaleuca lateriflora subsp. lateriflora and Melaleuca halmaturorum at Lake Bryde</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.1.2a</td>
<td>Species Distribution along Bryde Transect 1 in 1997 and 2000</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3.1.2b</td>
<td>Species Distribution along Bryde Transect 2 in 1997 and 2000</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1.2c</td>
<td>Species Distribution along Bryde Transect 3 in 1997 and 2000</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3.1.2d</td>
<td>Species Distribution along Bryde Transect 4 in 1997 and 2000</td>
<td>15</td>
</tr>
<tr>
<td>Table 3.2.1</td>
<td>Summary of Tree Data for Coomalbidgup Swamp</td>
<td>17</td>
</tr>
<tr>
<td>Table 3.2.2</td>
<td>A Brief Summary of Changes to the Understorey at Coomalbidgup Swamp Transects</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.2.1</td>
<td>Size Class Distributions for Banksia speciosa, Eucalyptus occidentalis, Melaleuca cuticularis and Acacia cyclops at Coomalbidgup Swamp</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.2.2a</td>
<td>Species Distribution along Coomalbidgup Transect 1 in 1997 and 2000</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.2.2b</td>
<td>Species Distribution along Coomalbidgup Transect 2 in 1997 and 2000</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.2.2c</td>
<td>Species Distribution along Coomalbidgup Transect 3 in 1997 and 2000</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.2.2d</td>
<td>Species Distribution along Coomalbidgup Transect 4 in 1997 and 2000</td>
<td>24</td>
</tr>
<tr>
<td>Table 3.3.1</td>
<td>Summary of Tree Data for Lake Coyrecup</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.3.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Coyrecup Transects</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.3.1</td>
<td>Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus loxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.3.2a</td>
<td>Species Distribution along Coyrecup Transect 1 in 1997 and 2000</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.3.2b</td>
<td>Species Distribution along Coyrecup Transect 2 in 1997 and 2000</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.3.2c</td>
<td>Species Distribution along Coyrecup Transect 3 in 1997 and 2000</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.3.2d</td>
<td>Species Distribution along Coyrecup Transect 4 in 1997 and 2000</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.3.2e</td>
<td>Species Distribution along Coyrecup Transect 5 in 1997 and 2000</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.4.1</td>
<td>Summary of Tree Data for Lake Kulikup</td>
<td>35</td>
</tr>
<tr>
<td>Table 3.4.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Kulikup Transects</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.4.1</td>
<td>Size Class Distributions of E. wandoo, E. decipiens, M. rhaphiophylla and M. cuticularis for Lake Kulikup.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.4.2a</td>
<td>Species Distribution along Kulikup Transect 1 in 1997 and 2000</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.4.2b</td>
<td>Species Distribution along Kulikup Transect 2 in 1997 and 2000</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.4.2c</td>
<td>Species Distribution along Kulikup Transect 3 in 1997 and 2000</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.4.2d</td>
<td>Species Distribution along Kulikup Transect 4 in 1997 and 2000</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.5.1</td>
<td>Summary of Tree Data for Lake Noobijup</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.5.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Noobijup Transects</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.5.1</td>
<td>Corymbia calophylla, Eucalyptus marginata, Melaleuca rhaphiophylla, Banksia littoralis and Viminaria juncea</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.5.2a</td>
<td>Species Distribution along Noobijup Transect 1 in 1997 and 2000</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.5.2b</td>
<td>Species Distribution along Noobijup Transect 2 in 1997 and 2000</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.5.2c</td>
<td>Species Distribution along Noobijup Transect 3 in 1997 and 2000</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.5.2d</td>
<td>Species Distribution along Noobijup Transect 4 in 1997 and 2000</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.5.2e</td>
<td>Species Distribution along Noobijup Transect 5 in 1997 and 2000</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.6.1</td>
<td>Summary of Tree Data for Lake Toolibin</td>
<td>59</td>
</tr>
<tr>
<td>Table 3.6.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Toolibin Transects</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.6.1</td>
<td>Size Class Distributions of Melaleuca strobophylla and Casuarina obesa at Lake Toolibin</td>
<td>61</td>
</tr>
</tbody>
</table>
List of Figures and Tables cont.

<table>
<thead>
<tr>
<th>Figure Ref.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.6.2a</td>
<td>Species Distribution along Toolibin Transect 1 in 1997 and 2000.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.6.2b</td>
<td>Species Distribution along Toolibin Transect 2 in 1997 and 2000.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.6.2c</td>
<td>Species Distribution along Toolibin Transect 3 in 1997 and 2000.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.6.2d</td>
<td>Species Distribution along Toolibin Transect 4 in 1997 and 2000.</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.7.1</td>
<td>Summary of Tree Data for Lake Towerrinning</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.7.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Towerrinning Transects</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.7.1</td>
<td>Size Class Distributions of Eucalyptus rudis and Melaleuca rhaphiophylla</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.7.2a</td>
<td>Species Distribution along Towerrinning Transect 1 in 1997 and 2000.</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.7.2b</td>
<td>Species Distribution along Towerrinning Transect 2 in 1997 and 2000.</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.7.2c</td>
<td>Species Distribution along Towerrinning Transect 3 in 1997 and 2000.</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.8.1</td>
<td>Summary of Tree Data for Lake Wheatfield</td>
<td>68</td>
</tr>
<tr>
<td>Table 3.8.2</td>
<td>A Brief Summary of Changes to the Understorey at Lake Wheatfield Transects</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.8.1</td>
<td>Size Class Distributions of Melaleuca cuticularis, Banksia speciosa, Eucalyptus sp. 1 (E. incrassata?), Spyridium globulosum and Melaleuca brevifolia at Lake Wheatfield.</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.8.2a</td>
<td>Species Distribution along Wheatfield Transect 1 in 1997 and 2000.</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.8.2b</td>
<td>Species Distribution along Wheatfield Transect 2 in 1997 and 2000.</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.8.2c</td>
<td>Species Distribution along Wheatfield Transect 3 in 1997 and 2000.</td>
<td>74</td>
</tr>
<tr>
<td>Figure 3.8.2d</td>
<td>Species Distribution along Wheatfield Transect 4 in 1997 and 2000.</td>
<td>75</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Objectives

This report represents the vegetation component of a project designed to provide ongoing monitoring of wetland salinity and biological resources in wetlands of the agricultural zone of south-west Western Australia. Maintenance of wetland biological diversity in the agricultural zone is one of the major objectives of the Salinity Action Plan. Due to their low position in the landscape, wetlands are the habitat most affected by salinisation.

The Wetland Monitoring Project has four specific objectives, only one of which is relevant to this report:

1) Analyse and report trends in salinity and depth of agricultural zone wetlands monitored by CALM since 1978.
2) Monitor salinity, depth and nutrient status of a broad range of wetlands.
3) Monitor waterbirds, fish, frogs and aquatic invertebrates in a sub-set of wetlands to measure any changes in fauna of the wetlands.
4) Monitor floristic composition and tree health in the same sub-set of wetlands to measure any changes in flora occurring in, and around the wetlands.

Work presented in this document is an integral part of the overall project and will specifically address the fourth objective. Information from other components of the project that address the remaining objectives, will be used to interpret change in the vegetation and the impact this may have on fauna.

Detailed objectives for the monitoring of wetland vegetation are as follows:

1) Establish permanent monitoring transects at a sub-set of wetlands (as determined by the Wetland Monitoring Project Team).
2) Identify native plant species within transects and monitor change in composition, species richness and diversity.
3) Quantify the importance of overstorey and understorey plant species within monitoring transects by assessing density and foliage cover, and monitor change.
4) Identify the physiognomy of wetland plant communities within the transects and monitor change.
5) Categorise wetland tree health within the transects and monitor change.
6) Monitor wetland plant population dynamics within transects by recording seedling recruitment, survival and population age/size class structure.
7) Identify the distribution of wetland plant populations within the transects relative to hydrological regime and salinity status, and monitor change.

1.2 Scope and Approach

The plan for vegetation monitoring involves triennial measurements of relevant parameters. Because of the need to incorporate results from the biological survey when selecting monitoring sites, the monitoring program will be phased in over a three year period. This will allow techniques to be validated and refined, if necessary, on a small set of wetlands in the first year. It is intended for the final set of 25 wetlands to represent a range of salinities and susceptibilities to secondary salinisation. Therefore, the 25 wetlands will consist of 5 categories with respect to salinity, with 5 representative wetlands (or replicates) in each category. This is summarised in the table below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Comment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>Freshwater wetlands with no immediate threat</td>
<td>5</td>
</tr>
<tr>
<td>Brackish↑ (improving)</td>
<td>'Brackish' wetlands where remedial works likely to improve quality</td>
<td>5</td>
</tr>
<tr>
<td>Brackish↓ (declining)</td>
<td>'Brackish' wetlands threatened by increased salinisation</td>
<td>5</td>
</tr>
<tr>
<td>2° saline</td>
<td>2° saline wetlands with long history of salinity but further change likely</td>
<td>5</td>
</tr>
<tr>
<td>1° saline</td>
<td>Naturally saline or hypersaline wetlands where change may occur</td>
<td>5</td>
</tr>
</tbody>
</table>
In 2000 vegetation was reassessed at 8 wetlands:

<table>
<thead>
<tr>
<th>Site</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryde</td>
<td>Brackish</td>
</tr>
<tr>
<td>Coomalbidgup</td>
<td>Brackish</td>
</tr>
<tr>
<td>Coyrecup</td>
<td>2° saline</td>
</tr>
<tr>
<td>Kulikup (Boyup Brook 18239)</td>
<td>Fresh</td>
</tr>
<tr>
<td>Noobijup</td>
<td>Brackish</td>
</tr>
<tr>
<td>Toolibin</td>
<td>Brackish</td>
</tr>
<tr>
<td>Towerrunning</td>
<td>Brackish</td>
</tr>
<tr>
<td>Wheatfield</td>
<td>1° saline</td>
</tr>
</tbody>
</table>

The methodology used was specifically designed to address change in wetland vegetation floristics, physiognomy, individual plant vigour and population vigour and dynamics in response to long-term changes in hydrology and salinity. The various components of the methodology are as follows (detailed description of these components is given in the Section 2.0: Methods):

1) Transect establishment.
 Between three and six permanently marked transects were established at each wetland. The location of each transect was determined using GPS and marked on maps for future reference. All location markers and tags are metal. Transects are made up of contiguous 20 x 20 m quadrats running perpendicular to the shoreline into upland vegetation. Each of the 20 x 20 m quadrats is divided into five 4 x 20 m quadrats. Photographs are taken each monitoring year from two marked reference points. Site data such as topographic position, slope, aspect, surface soil characteristics, litter and water depth are recorded.

2) Floristic composition, species richness and diversity.
 Within each 4 x 20 m subplot of each 20 x 20 m quadrat all overstorey species and large understory species (≥1.5 m) are identified. All trees were tagged and given a unique reference number during transect establishment. Data for each overstorey subplot is kept distinct to determine gradient transitions. Understorey 4 x 4 m subplots focus on species < 1.5 m. Presence of seedlings of tree and large shrub species are recorded in overstorey sub-plots.

3) Density and foliage cover.
 Density of overstorey and understory species is determined for each subplot. Percentage foliage cover for each understory species is determined by direct measurement (two foliage diameter measurements at right angles) of each individual within each 4 x 4 m subplot. The foliage cover of understory species without distinct projected foliage area, such as sedges and rushes, is estimated as a percentage of the subplot area. Percentage canopy cover is determined for each 20 x 20 m quadrat.

4) Physiognomy.
 Height ranges for each vegetation strata are measured within quadrats and subplots. Profile diagrams depicting vegetation structure were constructed for each transect in the first monitoring year.

5) Tree vigour.
 The vigour of each individual tree within overstorey subplots is categorised according to a subjective scale of 1–5 based on estimates of the proportion of live canopy foliage.

6) Population dynamics.
 Size class structure of key tree species is determined by measuring height and diameter at breast height (DBH) of each individual in each 20 x 20 m quadrat. Data are combined to develop size class frequency plots and illustrate population structure. Seedling recruitment events are recorded in the field when found.

7) Distribution of wetland plant communities, populations.
 The different structural units of vegetation at each wetland were mapped from aerial photography and ground truthing at the time of transect establishment. Historical aerial photographs were examined and vegetation units mapped to determine changes in vegetation cover and distribution. At the transect
scale, distribution of plant populations or community types is related to hydrology and salinity. The ground level (in relation to the deepest point in the lake) at each end of each 4 x 20m overstorey subplot is measured using an auto level and staff. These relative levels will be converted to mAHID when the depth gauges at each wetland are surveyed. The elevational gradient along each transect can then be compared to wetland water levels (information from other CALM and WRC SAP projects) and the water regime determined for different positions on that transect. Where available, historical wetland water levels will be related to vegetation distribution to identify past impacts and explain current distributions.

Once sufficient information has been collected, water regime requirements and salinity tolerances of key wetland plant species will be identified and used to predict impacts and restoration criteria.

8) Physico-chemical parameters.
Transects are located adjacent to piezometers (if present) established as part of the Wetland Monitoring Project. Information on groundwater level and salinity is vital to the correct interpretation of vegetation change. Surface soil salinities at each transect are measured each monitoring year using an EM38 and validated with limited soil sampling and direct measurement (EC of 1:5 soil:water extracts). Information on water salinity and nutrients from other projects, once available, will be related to vegetation vigour and survival.

9) Database
All data collected as part of the Wetland Vegetation Monitoring Project will be databased using Microsoft Excel. Original field record forms will be archived and referenced to the digital database.

1.3 Outcomes
The first reassessment of transects at eight wetlands (Bryde, Coomalbidgup, Coyrecup, Kulikup, Noobijup, Toolibin, Towerrinning and Wheatfield) was undertaken in 2000. These transects were established in 1997, when the first assessment occurred. The floristic and structure data for the vegetation is complete and has been databased.

Between 1997 and 1999 the focus of the Project has been the establishment of transects and the development of an appropriate and effective monitoring structure and procedure. Population structure analysis and in particular, seedling establishment monitoring, has begun, however, it will not be complete until seedling presence and survival at all wetlands has been reassessed.
2.0 METHODS

2.1 Transect Site Selection

In 1997 the number and positioning of transects at each wetland was determined using 1:5000 aerial photographs and a preliminary site visit by Neil Gibson (CALM Wetland Monitoring – Vegetation Coordinator) and the ECU team. The sites were selected to be representative of both the vegetation communities and the physical characteristics of each wetland. Sites were generally located around the wetland basin, perpendicular to the water body, extending from the terrestrial vegetation to below the high water mark. On two wetlands (Coyrecup and Noobijup) sites were also located around drainage lines identified as areas undergoing significant change due to salinity. Three to five transects were established at each wetland.

2.2 Transect Design

Each transect consists of a series of contiguous 20 x 20 m quadrats, which are marked at each corner with a steel fence post. Tape measures and an optical square were used to ensure all plots were square and of equal size. For the eight wetlands reassessed, the transects consist of one to three contiguous plots depending on the width and composition of the vegetation surrounding the wetland, giving transect lengths of 20 to 60 m.

The quadrats are further divided into five 4 x 20 m plots for assessment of trees and large shrubs. Within each 4 x 20 m plot, a 4 x 4 m subplot is located at either the left or right side for assessment of all understorey plants (see Figure 2.1 below).

![Figure 2.1: Transect Design.](image)

To facilitate accurate re-monitoring of the understorey, a fence spreader is located every 20 m along the transect, 4 m in from the side where the 4 x 4 m sub-plots were established. The 4 x 20 m and 4 x 4 m plots were not individually marked as it was felt that this made the transects too visible. An aluminium tag was attached to the top left fence post of each transect (furthest from the water body) indicating the site and transect number. Compass bearings were also taken from this point across and down the transect to enable the transect to be re-established in the event of fence posts being stolen. At lakes Towerrinning and Wheatfield the lowest ends of the transects were not staked as these areas were commonly used for recreation and it was felt that the presence of fence posts in the water could be hazardous. These posts can easily be replaced during monitoring by sighting from the upland plots. GPS readings were recorded for each transect at the tagged fence post.

2.3 Vegetation Monitoring

2.3.1 Tree Species

Within the 4 x 20 m plots all trees were tagged with an aluminium tag punched with a unique reference number. Tags were attached at breast height (approx. 1.5 m) with a galvanised roofing nail or a large loop of galvanised wire if the stem was too narrow to nail. For each tree within each plot the species, diameter at tag height and crown condition were recorded. Stem diameter was measured directly under the tag if nailed or at breast height if the tag was wired onto the tree unless otherwise noted in the data. In the case of individual trees with multiple stems, all stems were measured at the same height as the position of the tag or at breast height. In addition to tracking growth and vigour of trees in the future, stem diameters also permit size class analysis of the populations. In the case of trees with multiple stems, the largest stem was used for the size class diagrams prepared for this report.

Crown assessment was carried out using a subjective three part scale where a score is recorded for crown density, dead branches and epicormic growth. Using diagrams for comparison, crown density is given a score out of nine, dead branches a score out of nine and epicormic growth a score out of five (Ladd, 1996) (Figure 2.2). The higher the overall score the better the condition of the tree. The number, species and height of tall shrubs (>1.5 m) and seedlings of trees were also recorded in the 4 x 20 m plots. At sites where seedling density was so
high that each seedling could not be individually counted (eg. Coomalbidgup Swamp), eleven 1 x 1m quadrats were randomly placed within the subplot and all seedlings within those quadrats were counted. The mean number of seedlings of each species was then averaged for the 1 x 1m quadrats and this number was multiplied by the area of the 4 x 20 m plot to give a total seedling count.

The transects reported on here were established in 1997/98 and some comparisons with the data collected at that time were possible. For each wetland these data were plotted and further summarised in table format for comparison.

Within each 20 x 20 m plot heights were measured with a clinometer and tape of each tree species. Percentage canopy cover for each tree species was determined for each 20 x 20 m plot by walking a 100 point grid (every 2 m across and 2 m along the plot). At each point the canopy was examined and any species with foliage projecting across this point was recorded giving a 100 point assessment of the canopy, which was directly converted to percentage cover for each species. A clinometer was used to ensure the user was looking directly into the canopy at a 90° angle.

2.3.2 Understorey Species

Within the 4 x 4 m sub-plots, all understorey plants were identified and percentage foliage cover determined by direct measurement (two foliage measurements at right angles) for species with a distinct foliage area, or percentage estimates for rushes and sedges. Height ranges for each species were also recorded.

Samples of each plant species were collected and returned for identification. Difficult to identify species were identified by CALM Woodvale staff. Species which are yet to be accurately identified are noted in the data by a question mark and, where necessary, further material will be collected in spring to assist in identification. Voucher specimens will be lodged with the WA Herbarium.

Understorey data collected in 1997/98 were also used for comparisons with the latest data. Plots and tables were drawn up for each wetland. Significant changes were highlighted and the following terms were used to summarise these comparisons for each transect plot:

No Change: No change in species composition and cover values since 1997; or no change in species composition, but small variances in cover values (ie. variances of 1 to 20%).

Little Change: Small changes in cover values (as above) plus small changes in species composition (eg. loss or addition of 1 to 3 species).

(No Understorey): No understorey species recorded in 1997 and 2000.

![Crown Assessment Procedure Diagrams](Ladd, 1996)
Salinity Action Plan. Wetland Vegetation Monitoring 2000/01

Dead branches
9 No viable dead branches or branchlets except thin twigs inside new leaf development and lowest branches being shed.
7 Dead branchlets evident on close inspection. Not all over crown.
3 Small branchless dead, not all over crown. Easily observed but not seriously affecting crown.
1 Large and small branchless dead over most of the crown.

Epicormic growth
5 Nil epicormic growth with normal litter growth concentrated at the branch extremities.
4 Slight in part of crown only.
3 Moderate over most of crown. No
crown.
2 Severe on crown or stem.
1 Severe on crown and stem.

Figure 2.2b: Crown Assessment Procedure Diagrams. (Ladd, 1996).

2.4 Physico-Chemical Parameters

Soil properties (field assessment of texture) and litter distribution was subjectively described for each 20 x 20 m plot of each transect. Three soil samples were also taken from each plot and analysed in the laboratory for conductivity by 1:5 soil water extraction, agitated for one hour and measured with a bench conductivity meter for calibration of the EM38.

EM38 measurements, which determine soil conductivity over 1-1.5m depths were taken at three points across each plot, every 4 m along the transect. Adequate distance was always allowed when measuring near the fence posts or other metallic objects in the plots. EM38 data was validated against direct conductivity measurement of the soil samples.
3.0 RESULTS

3.1 Lake Bryde

3.1.1 Description

Lake Bryde (33°21' S, 118°50' E) is an ephemeral wetland (C class reserve #28667) lying in a catchment more than 70% cleared of native vegetation (Watkins et al., 1987). The lake has a main inflow channel at the southern end, which can also act as an outflow channel after periods of flooding. The lake can overfill during flooding events but will retain water for extended periods after floods.

Transect 1: (GPS: 50 669785 / 6307998) lies some 200 m north of the dam running from the top of the hill down the slope to the lakebed.

Transect 2: (GPS: 50 669752 / 6308525) approximately 750 m north of the dam located similarly to Transect 1.

Transect 3: (GPS: 50 670335 / 6308301) is located on the north-eastern side of the lake where the topography is much flatter than that of the western side.

Transect 4: (GPS: 50 670089 / 6307922) lies approximately 150 m north east of the inlet channel on a gradual slope.

3.1.2 Plant Communities

The upland vegetation sampled consists of a woodland of Eucalyptus flocktoniae – Eucalyptus kondininensis on the top of the ridge around the west side of the lake and on the flatter ground of the north and eastern sides. On the steep slope of the western side, dense Melaleuca lanceolata, M. thyoides, M. adnata, and M. lateriflora subsp. lateriflora dominate the understorey. In the littoral zone, Eucalyptus occidentalis and stands of Melaleuca strobophylla and M. halmaturorum* occur with distinct lines of saplings and seedlings of E. occidentalis and M. strobophylla distributed around the west side of the lake. Similarly on the eastern side, E. occidentalis, M. halmaturorum and M. strobophylla occur in the littoral zone, however, M. lateriflora subsp. lateriflora is the dominant tall shrub/small tree on the eastern side. Muehlenbeckia horrida subsp. abdita, which is endemic to Lake Bryde, occurs as an emergent across much of the lake basin.

*M. halmaturorum was identified as M. cuticularis in 1997.

3.1.3 Population Structure and Tree Vigour

The size class distributions (Figure 3.1.1) show the E. kondininensis and E. flocktoniae populations to be relatively mature with few stems in the smaller size classes. No seedlings of these species were found in the study sites in both 1997 and 2000. The dominance of small stems and seedlings in the E. occidentalis and M. strobophylla populations reflect the large number of saplings and seedlings that occur on the western and northern sides of the lake. These numbers have been reduced since 1997 with a 65% and 17% loss respectively of individuals with a stem diameter of <2 – 5 cm. These seedlings and saplings are present in distinct lines around the lake and represent significant past recruitment events of these species. The pattern of establishment suggests germination has occurred in flotsam lines washed up at the corresponding high water mark, which probably provide ideal establishment conditions as well as a potential seed source. M. cuticularis seedlings were not found in any of the study plots in 1997 or 2000 (Table 3.1.1). Crown scores for all species are relatively high considering the high soil salinities, although many of the M. halmaturorum trees occurring in the shallows of the water were stressed possibly due to waterlogging and salinity. There has been no significant change in vigour of the overstorey since 1997, with only a few species, notably E. flocktoniae, E. kondininensis and M. lateriflora lateriflora experiencing a slight reduction in health, which may be due to the higher water levels and soil salinities recorded in 2000.

Table 3.1.1: Summary of Tree Data for Lake Bryde.

<table>
<thead>
<tr>
<th>Species</th>
<th>Trees</th>
<th>Trees</th>
<th>Seedlings</th>
<th>Seedlings</th>
<th>Saplings</th>
<th>Saplings</th>
<th>MCS (S.D)</th>
<th>MCS (S.D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>124</td>
<td>123</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>13.9 (4.4)</td>
<td>11.3 (4.25)</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>48</td>
<td>15</td>
<td>15</td>
<td>12.9 (4.5)</td>
<td>13.4 (4.01)</td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>42</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.5 (4.2)</td>
<td>12.7 (4.27)</td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td>32</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12.3 (2.7)</td>
<td>12.9 (3.58)</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>115</td>
<td>116</td>
<td>69</td>
<td>83</td>
<td>52</td>
<td>62</td>
<td>14.5 (3.1)</td>
<td>14.6 (3.75)</td>
</tr>
<tr>
<td>Melaleuca lateriflora subsp. lateriflora</td>
<td>41</td>
<td>40</td>
<td>0</td>
<td>11</td>
<td>24</td>
<td>62</td>
<td>12.9 (3.2)</td>
<td>11.2 (4.30)</td>
</tr>
</tbody>
</table>

MCS – Mean crown score
Few changes in understory composition and cover were recorded. The introduced European herb (Hussey, Keighery, Cousins, Dood and Lloyd, 1997) Centaurium erythraea was found in Transect 1, quadrat 3A and Transect 4, quadrat 2E (Table 3.1.2, Figures 3.1.2a and d). The understory species Cassytha racemosa has experienced a loss of cover along Transect 2, where it now occurs in only 3 quadrats as opposed to 8 in 1997 (Figure 3.1.2b). This has resulted in quadrats 1A-E and 2B and C being devoid of understory cover. Flooding of quadrats at lower elevations (3A or B to E along all transects) has caused the complete loss of understory cover along Transects 1 and 2 (Figures 3.1.2a and b). Quadrat 2D of Transect 3 shows the total loss of Santalum acuminatum (refer Table 3.1.2).

Table 3.1.2: Brief Summary of Changes to the Understorey at Lake Bryde Transects

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Little Change</td>
<td>Loss of 1 species, now no understory</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>1B</td>
<td>Little Change</td>
<td>Loss of 1 species, now no understory</td>
<td>No Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>1C</td>
<td>Little Change</td>
<td>Loss of 1 species, now no understory</td>
<td>No Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>1D</td>
<td>Little Change</td>
<td>Loss of 1 species, now no understory</td>
<td>No Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>1E</td>
<td>Little Change</td>
<td>Loss of 1 species, now no understory</td>
<td>No Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>2A</td>
<td>Loss of 1 species, now no understory</td>
<td>Little Change</td>
<td>Little Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>2B</td>
<td>Loss of 1 species, now no understory</td>
<td>Little Change</td>
<td>Little Change</td>
<td>Lost 1, gained 5 sp.</td>
</tr>
<tr>
<td>2C</td>
<td>Loss of 1 species, now no understory</td>
<td>Little Change</td>
<td>No Change</td>
<td>Lost 2, gained 4 sp.</td>
</tr>
<tr>
<td>2D</td>
<td>Loss of 1 species, now no understory</td>
<td>Little Change</td>
<td>Santalum acuminatum – 1997 53.6%, 2000 nil</td>
<td>Little Change</td>
</tr>
<tr>
<td>2E</td>
<td>Little Change</td>
<td>Little Change</td>
<td>Little Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>3A</td>
<td>Little change, but add. 1 introduced sp.</td>
<td>Loss of 1 species, now no understory</td>
<td>Little Change</td>
<td>Little Change</td>
</tr>
<tr>
<td>3B</td>
<td>Loss of 1 species, now no understory</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3C</td>
<td>Loss of 1 species, now no understory</td>
<td>Loss of 1 species, now no understory</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3D</td>
<td>Loss of 1 species, now no understory</td>
<td>Loss of 1 species, now no understory</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3E</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
</tbody>
</table>

3.1.4 Soil Characteristics

Upslope soil salinities on the western side were generally quite low (65 to 90 mS/cm), however, salinity increased as elevation decreased with soils at the lowest elevations having conductivities as high as 390 mS/cm (Appendix 1). On the flatter eastern side, soil salinity was generally high (300 to 500 mS/cm) with the highest readings obtained at Transect 4, which is near the inflow channel. EM38 readings indicate that soil salinity has increased slightly since 1997 with the greatest rise occurring in the terrestrial zone.

3.1.5 Summary

Given the high soil salinities recorded at this lake in 1997 and the general increase in 2000, the littoral vegetation and the vegetation on the lower elevations could be expected to deteriorate, however, this has not been entirely the case. The retention, and in some cases increased vigour of mature trees at Bryde on the elevated western side of the lake may be the result of a change in hydrological conditions. The increase in the numbers of seedlings and saplings for most species since 1997 could be due to more favourable hydrological conditions accompanied by a reduction in understory competition and diversity, which has been reduced on all Transects since 1997. However, sustained vigour and increased tree recruitment is a characteristic of the wetland vegetation on the western side of the lake only. As mentioned in 1997, concern lies with the vegetation on the eastern side of the lake, which, due to the lower elevations and possibility of flooding during high rainfall years, is the most susceptible to increasing soil salinity. Wetland and littoral species on Transects 3 and 4 are under significant stress with a visible line of dead M. halnaturorum and M. strobophylla forming a band around the eastern bank. The lack of an understory along the higher elevations of Transects 1 and 2 is of concern as it may indicate the development of unfavourable soil conditions and allow invasion by exotic species.
Figure 3.1.1: Size Class Distributions for *Eucalyptus flocktoniae*, *Eucalyptus occidentalis*, *Eucalyptus kondininensis*, *Melaleuca strobophylla*, *Melaleuca lateriflora* subs. *lateriflora* and *Melaleuca halmaturorum* at Lake Bryde.
Eucalyptus kondininensis

Melaleuca strobophylla

Figure 3.1.1 (cont.): Size Class Distributions for *Eucalyptus flocktoniae*, *Eucalyptus occidentalis*, *Eucalyptus kondininensis*, *Melaleuca strobophylla*, *Melaleuca lateriflora* subs. *lateriflora* and *Melaleuca halmaturum* at Lake Bryde.
Figure 3.1.1 (cont.): Size Class Distributions for *Eucalyptus flocktoniae*, *Eucalyptus occidentalis*, *Eucalyptus kundininensis*, *Melaleuca strobophylla*, *Melaleuca lateriflora* subsp. *lateriflora* and *Melaleuca halmaturorum* at Lake Bryde.
<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia erinacea</td>
<td>1A, 1B, 1C, 1D, 1E</td>
</tr>
<tr>
<td>Cassytha racemosa</td>
<td>2A, 2B, 2C, 2D, 2E</td>
</tr>
<tr>
<td>Comespoma calymega</td>
<td>3A, 3B, 3C, 3D, 3E</td>
</tr>
<tr>
<td>Centaurium erythraea</td>
<td></td>
</tr>
<tr>
<td>Dodonea stenozyga</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Gahnia ancirophylla</td>
<td></td>
</tr>
<tr>
<td>Grass sp.</td>
<td></td>
</tr>
<tr>
<td>Grevillea huegelii</td>
<td></td>
</tr>
<tr>
<td>Lomandra effusa</td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca adnata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora lateriflora</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td></td>
</tr>
<tr>
<td>Melaleuca thyoides</td>
<td></td>
</tr>
<tr>
<td>Melaleuca uncinata</td>
<td></td>
</tr>
<tr>
<td>Olearia muelleri</td>
<td></td>
</tr>
<tr>
<td>Austrostipa sp.</td>
<td></td>
</tr>
<tr>
<td>Templetonia sulcata</td>
<td></td>
</tr>
</tbody>
</table>

Note: 3B - 3E flooded

Legend:
- **1997**
- **2000**
- Seedlings
- D = Dead

Figure 3.1.2a: Species Distribution along Bryde Transect 1 in 1997 and 2000.
Bryde - Transect 2

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casseytha racemosa</td>
<td></td>
</tr>
<tr>
<td>Chenopodium glaucum?</td>
<td></td>
</tr>
<tr>
<td>Dodonaea stenozyga</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kundininensis</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora lateriflora</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td></td>
</tr>
<tr>
<td>Rhagodia drummondii</td>
<td></td>
</tr>
<tr>
<td>Rhagodia sp.</td>
<td></td>
</tr>
<tr>
<td>Templetonia sulcata</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **1997:**
 - Seedlings
 - D = Dead

- **2000:**
 - Seedlings
 - D = Dead

Note: 3A - 3E flooded

Figure 3.1.2b: Species Distribution along Bryde Transect 2 in 1997 and 2000.
Bryde - Transect 3

Legend:

<table>
<thead>
<tr>
<th></th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alyxia buxifolia</td>
<td></td>
</tr>
<tr>
<td>Atriplex sp.</td>
<td></td>
</tr>
<tr>
<td>Austrostipa trichophylla</td>
<td></td>
</tr>
<tr>
<td>Chenopodiaceae sp.</td>
<td></td>
</tr>
<tr>
<td>Danthonia sp.</td>
<td></td>
</tr>
<tr>
<td>Enchylaena tomentosa</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma longitudinale</td>
<td></td>
</tr>
<tr>
<td>Lomandra eflusa</td>
<td></td>
</tr>
<tr>
<td>Lomandra micrantha micrantha</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora lateriflori</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td></td>
</tr>
<tr>
<td>Olearia dampsieri eremicola</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Olearia muelleri</td>
<td></td>
</tr>
<tr>
<td>Rhagodia drummondii</td>
<td></td>
</tr>
<tr>
<td>Rhagodia preissii</td>
<td></td>
</tr>
<tr>
<td>Santalum acuminatum</td>
<td></td>
</tr>
<tr>
<td>Stackhousia muricata</td>
<td></td>
</tr>
<tr>
<td>Stipa elegansissima</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.1.2c: Species Distribution along Bryde Transect 3 in 1997 and 2000.
Figure 3.1.2d: Species Distribution along Bryde Transect 4 in 1997 and 2000.
Bryde - Transect 4 cont. 1A 1B 1C 1D 1E 2A 2B 2C 2D 2E 3A 3B 3C 3D 3E

Rhagodia drummondii

Santalum acuminatum

Threlkeldia diffusa

Legend:
1997
2000
Seedlings
D = Dead

Note: 3B - 3E flooded

Figure 3.1.2d cont.: Species Distribution along Bryde Transect 4 in 1997 and 2000.
3.2 Coomalbidgup Swamp

3.2.1 Description

Coomalbidgup Swamp is a C class reserve (#24633) situated approximately 45 km west of Esperance (33°42' S, 121°21' E). 97% of the Coomalbidgup catchment was cleared between 1947 and 1972, leaving only small areas of remnant vegetation along watercourses and around wetland basins. A single inlet creek at the north-east of the lake drains an area of approximately 97 km². Due to increasing groundwater recharge and above average rainfall from 1986 to 1989, the swamp contained surface water for this entire period. During 1989 heavy winter rainfall caused severe flooding in the catchment and increased water levels in the swamp (Froend et al., 1994). By 1992 45% of the trees on the lake bed that were alive at the time of the 1989 flooding were dead due to the prolonged inundation. The peripheral dryland vegetation was reduced by as much as one half by 1992 due to the high water levels (Froend et al., 1994). By the time the current survey was conducted, all trees on the lake bed had died. Froend et al. (1994) class the swamp as fresh to brackish during 1992 when water levels were still elevated and suggest that salinity may be higher when water levels recede.

Transect 1: (GPS: 51 348529 / 6268588) is located at the north-west side, down slope from the gravel pit;
Transect 2: (GPS: 51 348417 / 6268559) on the west side approximately 900 m north along Coomalbidgup Road;
Transect 3: (GPS: 51 349497 / 6267954) on the south side 550 m east along South Coast Highway from the lake entrance.
Transect 4: (GPS: 51 349647 / 6268196) on the west side approximately 150 m north along the boundary fence and 70m west towards the lake.

3.2.2 Plant Communities

Prior to 1989 the swamp was characterised by stands of Eucalyptus occidentalis extending across the basin with a fringe of Melaleuca cuticularis grading into upland vegetation dominated by Banksia speciosa. The wetland basin now contains dead E. occidentalis, M. cuticularis and B. speciosa stems are restricted to the higher ground. A prominent feature of the wetland now is the prolific recruitment of E. occidentalis and M. cuticularis in distinct ‘rings’ around the fringe of the basin. These rings are likely to correspond with past high water levels where seed collects in ‘flotsam’ lines by wind action. Regeneration of the B. speciosa woodland was not evident in this survey, probably due to an absence of fire since the flooding, which reduced the area of these woodlands. Stands of regenerating Melaleuca cuticularis and Eucalyptus occidentalis occur in all transects and appear in aerial photographs to extend all the way around the lake basin. In Transects 1, 3 and 4 a distinct gap is apparent between the upland vegetation and the regeneration, where the upland vegetation was killed during flooding. These areas lack regeneration by the terrestrial vegetation and have been heavily invaded by annual weeds. The western and northern sides of the swamp consist of a woodland of B. speciosa and Nuytsia floribunda in the upland regions with an understorey dominated by Leptospermum erubescens and Lepidosperma sp. To the south a woodland of E. occidentalis extends upslope, eventually being replaced by a mixed shrubland of Melaleuca sp., Hakea lissocarpa and Banksia media. This shrubland continues on the high ground around the southern portion of the lake and along the eastern side. On the eastern side the overstorey of the lower elevations is dominated by a woodland of E. occidentalis and M. cuticularis.

3.2.3 Population Structure and Tree Vigour

The size class distributions (Figure 3.2.1) indicate the effect of flooding on the wetland vegetation. The loss of the majority of the mature E. occidentalis and M. cuticularis population can be seen in the relatively low number of larger stems measured.

| Table 3.2.1: Summary of Tree Data for Coomalbidgup Swamp. |
|---------------------------------|---------|---------|---------|---------|---------|---------|
| Species | Trees | Trees | Seedlings | Seedlings | MCS (S.D) | MCS (S.D) |
| Banksia speciosa | 73 | 70 | 0 | 0 | 13.4 (4.5)| 15.7 (2.72)|
| Eucalyptus occidentalis | 267 | 347 | 1371 | 609 | 14.0 (3.9)| 15.4 (4.38)|
| Melaleuca cuticularis | 65 | 75 | 8095 | 6227 | 12.7 (2.7)| 15.5 (3.19)|
| Acacia cyclops | 23 | 21 | 185 | 167 | 16.5 (3.1)| 10.9 (4.36)|

MCS - Mean crown score
The prolific regeneration is apparent in the large number of stems in the <2 cm diameter size class. Since 1997 30% of the *M. cuticularis* stems <2 cm in diameter and 55% of the *E. occidentalis* stems <2 cm in diameter have died. The *B. speciosa* population is a generally mature one with only 3 new seedlings being recorded in 2000. Mean crown scores have lifted for each species since 1997 except for *Acacia cyclops* (Table 3.2.1), which has experienced prolonged inundation by high water levels during winter/spring, indicating that perhaps the population of *A. cyclops* that dominates the littoral zone recruited there during favourable low water levels.

Table 3.2.2: Brief Summary of Changes to the Understorey at Coomalbidgup Swamp Transects

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Little Change</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
</tr>
<tr>
<td>1B</td>
<td>No Change</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
</tr>
<tr>
<td>1C</td>
<td>No Change</td>
<td>No Change</td>
<td>Little change</td>
<td>Little change</td>
</tr>
<tr>
<td>1D</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
<td>No Change</td>
</tr>
<tr>
<td>1E</td>
<td>Little change</td>
<td>Little change</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>2A</td>
<td>No Change</td>
<td>Little change</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>2B</td>
<td>Little change</td>
<td>No Change</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>2C</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
</tr>
<tr>
<td>2D</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
</tr>
<tr>
<td>2E</td>
<td>Little change</td>
<td>Little change</td>
<td>Little change</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3A</td>
<td>Conyza albida (intro.)</td>
<td>Lost 3 sp (incl. 1 intro), now no understorey.</td>
<td>Lost 1 species, now no understorey.</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3B</td>
<td>Little change</td>
<td>Lost 3 sp (incl. 1 intro), now no understorey.</td>
<td>Lost 4 species, now no understorey.</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>3C</td>
<td>Little change</td>
<td>Lost 3 sp (incl. 1 intro), now no understorey.</td>
<td>Lost 5 species, now no understorey.</td>
<td>Lost 1 species, now no understorey.</td>
</tr>
<tr>
<td>3D</td>
<td>Lost 4 species, now no understorey.</td>
<td>Lost 3 sp (incl. 1 intro), now no understorey.</td>
<td>Lost 4 species, now no understorey.</td>
<td>Lost 3 species, now no understorey.</td>
</tr>
<tr>
<td>3E</td>
<td>Lost 3 species, now no understorey.</td>
<td>Lost 4 sp (incl. 1 intro), now no understorey.</td>
<td>Lost 4 species, now no understorey.</td>
<td>Lost 3 species, now no understorey.</td>
</tr>
</tbody>
</table>

Few changes in understorey composition and cover were recorded. The introduced American annual (Hussey, Keighery, Cousens, Dood and Lloyd, 1997) *Conyza albida* occurred in Transects 1 and 2 in 1997. It has increased its cover in Transect 1, quadrat 3A, but has disappeared from Transect 2 most likely due to prolonged inundation. Prolonged flooding of quadrats at lower elevations (3A to E) probably caused the complete loss of understorey cover along all transects (Table 3.2.2, Figures 3.2.2a to d).

3.2.4 Soil Characteristics

Soil salinities of the four transects are very low. Transects 1 and 2 do not exceed 100 mS/cm and Transects 3 and 4 range between 44-166 mS/cm and 14-134 mS/cm respectively. 1997 EM38 data were not recorded due to a malfunction and therefore comparisons regarding increases or decreases in soil salinity can not be made. Soil textures of the upland areas were generally grey sand grading to grey/white sand in the littoral zone.

3.2.5 Summary

The vegetation of Coomalbidgup Swamp has been severely altered during the 1980's and early 1990's as a result of the change in catchment hydrology due to land clearing and higher than average rainfall. The distribution of the overstorey has changed and large areas of dryland vegetation have been lost. Froend et al., (1994) indicate that the loss of this dryland vegetation reduces the buffer around the wetland exposing the swamp to increased disturbance and runoff. Composition of the regenerating peripheral vegetation may also differ from the pre-flooding condition depending upon disturbance such as fire, necessary for *B. speciosa* recruitment. The persistence and regeneration of the tree species and colonisation of the lake bed by these species is dependent on the hydrological regime of the altered catchment. Although there has been a substantial reduction in the number of seedlings of *M. cuticularis* and *E. occidentalis* since monitoring occurred in 1997, which is largely due to competitive effects, mature individuals have remained healthy and many new trees were found to have made large diameter gains, for example *B. speciosa* and *E. occidentalis*. As long as soil salinities remain low, large recruitment events occur, and understorey diversity and seedling establishment can be maintained, the vegetation of Coomalbidgup Swamp will remain in relatively good condition.
Figure 3.2.1: Size Class Distributions for Banksia speciosa, Eucalyptus occidentalis, Melaleuca cuticularis and Acacia cyclops at Coomalbidgup Swamp.
Melaleuca cuticularis

![Graph showing size class distributions for Melaleuca cuticularis.]

Acacia cyclops

![Graph showing size class distributions for Acacia cyclops.]

Figure 3.2.1 (cont.): Size Class Distributions for Banksia speciosa, Eucalyptus occidentalis, Melaleuca cuticularis and Acacia cyclops at Coomalbidgup Swamp.
Coomalbidgup - Transect 1

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cyclops</td>
<td></td>
</tr>
<tr>
<td>Acacia latipes latipes</td>
<td></td>
</tr>
<tr>
<td>Adenanthera cuneata</td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassytha melantha</td>
<td></td>
</tr>
<tr>
<td>Coryza albida</td>
<td></td>
</tr>
<tr>
<td>Cyperaceae sp.</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Goodenia viscida</td>
<td></td>
</tr>
<tr>
<td>Hibbertia racemosa</td>
<td></td>
</tr>
<tr>
<td>Hypolepis exsula</td>
<td></td>
</tr>
<tr>
<td>Isolepis nodosa</td>
<td></td>
</tr>
<tr>
<td>Jacksonia spinosa</td>
<td></td>
</tr>
<tr>
<td>Juncus pallidus</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
<tr>
<td>Leptospermum erubescens</td>
<td></td>
</tr>
<tr>
<td>Lyginia barbata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
</tr>
<tr>
<td>Melaleuca sp.</td>
<td></td>
</tr>
<tr>
<td>Melaleuca thymoides</td>
<td></td>
</tr>
<tr>
<td>Muehlenbeckia adpressa</td>
<td></td>
</tr>
<tr>
<td>Nuytsia floribunda</td>
<td></td>
</tr>
<tr>
<td>Patersonia occidentalis</td>
<td></td>
</tr>
<tr>
<td>Schoenus sp.</td>
<td></td>
</tr>
<tr>
<td>Sollya heterophylla</td>
<td></td>
</tr>
<tr>
<td>Tricosularia sp.</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **1997**
- **2000**
- **Seedlings**
- **D = Dead**

Figure 3.2.2a: Species Distribution along Coomalbidgup Transect 1 in 1997 and 2000.
Coomalbidgup - Transect 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cyclops</td>
<td>1A, 1B, 1C, 1D, 1E, 2A, 2B, 2D, 2E, 3A, 3B, 3C, 3D, 3E</td>
</tr>
<tr>
<td>Acacia dentifera</td>
<td></td>
</tr>
<tr>
<td>Acacia sp.</td>
<td></td>
</tr>
<tr>
<td>Adenanther cuneatus</td>
<td></td>
</tr>
<tr>
<td>Alyogyne heugelli</td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td></td>
</tr>
<tr>
<td>Coryza albida</td>
<td></td>
</tr>
<tr>
<td>Desmocladus flexuosus</td>
<td></td>
</tr>
<tr>
<td>Dianella revoluta</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Goodenia viscida</td>
<td></td>
</tr>
<tr>
<td>Hypoleana exsulca</td>
<td></td>
</tr>
<tr>
<td>Isolepis nodosa</td>
<td></td>
</tr>
<tr>
<td>Juncus pallidus</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma carploides</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
<tr>
<td>Leptospermum erubescans</td>
<td></td>
</tr>
<tr>
<td>Lomandra micrantha</td>
<td></td>
</tr>
<tr>
<td>Lygina barbata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca cutilicularis</td>
<td></td>
</tr>
<tr>
<td>Muehlenbeckia adpressa</td>
<td></td>
</tr>
<tr>
<td>Nuytsia floribunda</td>
<td></td>
</tr>
<tr>
<td>Olearia elaeophila</td>
<td></td>
</tr>
<tr>
<td>Patersonia occidentalis</td>
<td></td>
</tr>
<tr>
<td>Schoenus sp.</td>
<td></td>
</tr>
<tr>
<td>Sollya heterophylla</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **1997**
- **2000**

Figure 3.2.2b: Species Distribution along Coomalbidgup Transect 2 in 1997 and 2000.

Coomalbidgup - Transect 3

<table>
<thead>
<tr>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, 1B, 1C, 1D, 1E, 2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, 3D, 3E</td>
</tr>
</tbody>
</table>
Figure 3.2.2c: Species Distribution along Coomalbidgup Transect 3 in 1997 and 2000.
Coomalbidgup - Transect 4

Acacia cyclops
Acacia latipes latipes
Acacia sp 4
Desmoclados flexuosus
Diaella revoluta
Eucalyptus occidentalis
Goodenia viscosa
Isolepis nodosa
Jacksonia spinosa
Juncus pallidus
Lepidosperma sp.
Lomandra micrantha micrantha
Lyginia barbata
Melaleuca culicularis
Melaleuca thymoides
Muehlenbeckia adpressa
Schoenus sp.
Tricostularia sp.

Legend:
1997
2000
Seedlings
D = Dead

Figure 3.2.2d: Species Distribution along Coomalbidgup Transect 4 in 1997 and 2000.
3.3 Lake Coyrecup

3.3.1 Description

Lake Coyrecup Nature Reserve (A class #28552, 33°43’ S, 117°50’ E) lies approximately 25 km east of Katanning in the upper part of the Coblinine River drainage system (ANCA, 1996). The majority of the catchment is cleared and inflow occurs mainly via the large stream channel at the east of the reserve. The lake is hypersaline and near permanent, drying in only five out of fourteen years of monitoring (ANCA, 1996). Also included in this survey were the adjacent reserves number 26020 and Location Numbers 6904 and 9270. Reserve 26020 is a near pristine remnant, which an illegally constructed drain runs through, eventually joining up with the main stream channel. Location Numbers 6904 and 9270 are areas of re-purchased land, which have been grazed in the past (Lyons, 1988).

Transect 1: (GPS: 50 578606 / 6270394) lies in Reserve Location 6904 on a small dampland east of Coyrecup Lake and extends for 60 m from the terrestrial vegetation onto the dampland basin.

Transect 2: (GPS: 50 578360 / 6270161) runs for 60 m on the east side of the lake from the ridge down onto Coyrecup Lake.

Transect 3: (GPS: 50 578253 / 6269462) lies on the east side of the lake approximately 200 m north of the main inlet stream, running from the side of the ridge down to Coyrecup Lake.

Transect 4: (GPS: 50 580072 / 6269672) was established in Reserve 26020 approximately 20 m east of the end of the constructed drain and extends for 40m from the edge of the drainage area into the mixed *Melaleuca* low forest.

Transect 5: (GPS: 50 580451 / 6269640) runs north/south for 40 m approximately half way down the constructed drain in the *Melaleuca* low forest.

3.3.2 Plant Communities

A detailed description of the plant communities of Coyrecup Lake and associated reserves is provided by Lyons (1988). Understorey composition was generally species poor with introduced annuals dominating the sites around the lake and dampland. Transsects 2 and 3 sample the *Eucalyptus loxophleba*, *Allocasuarina huegeliana*, *Acacia acuminata* woodland of the ridge east of the lake and follow the gradient down into the *Casuarina obesa* woodland that fringes the lake. *Melaleuca halmaturorum* is the dominant tree species of the lake basin with a predominantly *Halosarcia pergranulata* understorey. The western side of the dampland (Transect 1) has a *Banksia prionotes* woodland on the highest ground grading to an *Acacia huegeliana-A. acuminata* woodland on the slope surrounding the dampland. Around the fringe of the basin is a *Eucalyptus occidentalis* woodland with an understorey of *Melaleuca hamulosa*, *M. lateriflora* and *M. uncinata*. The dampland basin supports a woodland of *Casuarina obesa* and *Melaleuca strobophylla*. Dense stands of juvenile *M. strobophylla* and occasional *C. obesa* seedlings occur around the fringe of the dampland. The vegetation around the drain in reserve 26020 is predominantly a *Melaleuca* mixed low forest with a *E. loxophleba* woodland on the higher ground at the south-west end of the drain. *Halosarcia pergranulata* is the dominant understorey species of the drain and surrounding areas.

3.3.3 Population Structure and Tree Vigour

The vegetation of Lake Coyrecup and the surrounding reserves was in generally good condition (Table 3.3.1), however, trees and understorey species associated with wetland basins and drains were showing signs of stress due to the increasing salinity. The *Melaleuca* species of the low forest (*Melaleuca acuminata*, *M. adenostyla* and *M. lateriflora*) around the drain in reserve 26020 are showing obvious signs of stress as are the *M. halmaturorum* stands on Lake Coyrecup. The more salt tolerant *Casuarina obesa* and *M. strobophylla* are in good health. The low mean crown score for the *M. strobophylla* probably reflects the high competition for resources in the dense stands of regeneration (particularly in Transect 1) rather than stress due to salinity or waterlogging. *Allocasuarina huegeliana* was the only species to record a significant reduction in vigour since 1997. All other species recorded an increase in vigour (MCS) since 2000, however, a greater variability in the standard deviation of the Mean Crown Score should be noted. The most significant recruitment of trees is evident in the dampland to the east of Coyrecup Lake. Of the 427 *M. strobophylla* saplings that were surveyed in 1997, 332 remain (Table 3.3.1, Figure 3.3.1). These occur around the fringe of the dampland in dense rings suggesting germination and establishment has occurred at one or more past high water marks. No seedlings or tall shrubs were observed around the drainage line in reserve 26020 or on Lake Coyrecup. Populations of the major overstorey species present at Lake Coyrecup and the surrounding reserves consist predominantly of young individuals between the 2.1-5 cm and 5.1-10 cm diameter size classes with few individuals represented in the larger classes. *E.
loxophleba is the exception with no seedlings or young individuals recorded in either 1997 or 2000 (Table 3.3.1). In the three years since 1997 there have been no significant changes in the population structure of the major overstorey species at this wetland.

Table 3.3.1: Summary of Lake Coyrcup Tree Data.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocasuarina huegeliana</td>
<td>24</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.1 (3.9)</td>
<td>7.72 (4.54)</td>
</tr>
<tr>
<td>Acacia acuminata</td>
<td>65</td>
<td>63</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>14 (4.4)</td>
<td>15 (4.25)</td>
</tr>
<tr>
<td>Banksia prionotes</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5 (2.1)</td>
<td>16.7 (2.92)</td>
</tr>
<tr>
<td>Melaleuca sloweophylla</td>
<td>76</td>
<td>46</td>
<td>8</td>
<td>427</td>
<td>332</td>
<td>0</td>
<td>10.7 (3.3)</td>
<td>11.9 (3.83)</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>17</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.6 (5.3)</td>
<td>16.3 (4.73)</td>
</tr>
<tr>
<td>Eucalyptus loxophleba</td>
<td>19</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.2 (3.7)</td>
<td>12.9 (4.28)</td>
</tr>
<tr>
<td>Casuarina obtusa</td>
<td>130</td>
<td>123</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14.5 (2.7)</td>
<td>16.3 (2.71)</td>
</tr>
<tr>
<td>Melaleuca uncinata</td>
<td>19</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16.5 (2.8)</td>
<td>19.2 (4.47)</td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td>65</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.6 (2.5)</td>
<td>15.2 (3.50)</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.8 (1.0)</td>
<td>15.2 (2.91)</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.9 (2.1)</td>
<td>15.7 (1.77)</td>
</tr>
<tr>
<td>Melaleuca kalkatarorum</td>
<td>36</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.9 (3.0)</td>
<td>12.6 (5.8)</td>
</tr>
<tr>
<td>Melaleuca edentosylya</td>
<td>49</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.7 (2.4)</td>
<td>13 (4.18)</td>
</tr>
<tr>
<td>Santalum albuminum</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.0 (0.0)</td>
<td>13 (0.0)</td>
</tr>
</tbody>
</table>

MCS - Mean crown score

Few changes in understorey composition and cover were recorded for Transects 3, 4 and 5, with the loss of 4 species in quadrat 1C of Transect 3 being the most significant change, as no new species were recruited into the quadrat either (Table 3.3.2). Transect 1, quadrats 1A to E lost between 3 and 5 species, leaving these quadrats without an understorey. Transect 2, quadrats 1A and B have now also lost their understorey. It is worth noting that a species of Carpobrotus (not identified yet) has been recorded in a number of quadrats along Transects 3, 4 and 5 (T3: 1B – 3A + 3E, T4: 1C – 2D, T5: 1A + 2E). It is not yet known whether this species is a native or an exotic member of that genus, however, it appears to be flourishing (Figures 3.3.2a to e).

Table 3.3.2: Brief Summary of Changes to the Understorey at Lake Coyrcup Transects.

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
<th>Transect 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Lost 4 sp, now no understorey.</td>
<td>Lost 1 sp, now no understorey.</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>1B</td>
<td>Lost 5 sp, now no understorey.</td>
<td>Lost 1 sp, now no understorey.</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>1C</td>
<td>Lost 3 sp, now no understorey.</td>
<td>(No Understorey)</td>
<td>Lost 4 species.</td>
<td>No Change.</td>
<td>No Change.</td>
</tr>
<tr>
<td>1D</td>
<td>Lost 4 sp, now no understorey.</td>
<td>No Change.</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>1E</td>
<td>Lost 4 sp, now no understorey.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>2A</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>2B</td>
<td>Little change.</td>
<td>(No Understorey)</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>2C</td>
<td>Little change.</td>
<td>Lost 1 sp, now no understorey.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>2D</td>
<td>Little change.</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>2E</td>
<td>(No Understorey)</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>3A</td>
<td>(No Understorey)</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>3B</td>
<td>(No Understorey)</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>3C</td>
<td>(No Understorey)</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
<tr>
<td>3E</td>
<td>(No Understorey)</td>
<td>No Change.</td>
<td>Little change.</td>
<td>Little change.</td>
<td>Little change.</td>
</tr>
</tbody>
</table>
3.3.4 Soil Characteristics

Highest soil conductivities were found on the Coyrecup lake bed at Transect 2 near the main inlet channel (447-500 mS/cm). Conductivities around the drain in reserve 26020 were also generally high (approximately 400 mS/cm). The basin of the damland, which does not receive inflow from the drain or the stream channel, had lower conductivities at around 300 mS/cm, which has remained stable since 1997. Soil salinity of the upland areas was generally low (appendix 1). Soil textures of the upland areas were generally grey to brown sands grading to sandy silts in the wetland basins and drains.

3.3.5 Summary

With increasingly saline runoff and groundwater from the surrounding catchment, the vegetation of the wetland basin and littoral zone is deteriorating and is likely to continue to decline. The drainage areas of reserve 26020, particularly around the illegally constructed drain, contain high soil salinities and the associated vegetation exhibits signs of stress. Soil salinity and the area of stressed vegetation is likely to keep increasing as salt is mobilised by runoff from the adjacent farmland. The damland to the east of Lake Coyrecup has a fairly high soil salinity, which may also increase if groundwater salinity continues to rise. Although the decline in tree numbers since 1997 has been minimal for most species, poor recruitment is likely to hinder the success of future populations if the widespread detrimental effects of farming, salinity and waterlogging continue. The large decline of *M. strobophylla* trees and saplings recorded in Transect 1 may be due to the increases in soil salinity recorded in 2000 and competition for limited resources. The general decline of understorey species along all Coyrecup transects is another indication of the development of unfavourable soil conditions.

Allocasuarina huegeliana

![Figure 3.3.1: Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus loxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake.](image-url)
Eucalyptus occidentalis

N.B. Due to differences in size class categorization, data for the <2 and 2.1–5 size classes can not be shown for 1997.

Figure 3.3.1 (cont.): Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus loxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake.
Figure 3.3.1 (cont.): Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus loxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake.
Figure 3.3.1 (cont.): Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus toxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake.
Figure 3.3.1 (cont.): Size Class Distributions of Allocasuarina huegeliana, Eucalyptus occidentalis, Acacia acuminata, Eucalyptus loxophleba, Casuarina obesa, Melaleuca strobophylla, Melaleuca acuminata, Melaleuca halmaturorum and Melaleuca adenostyla for Coyrecup Lake.
Coyrecup - Transect 1

Acacia acuminata
Allocasuarina huegeliana
Banksia prionotes
Casuarina obesa
Corresperma volubile
Austrostipa elegansima
Darwinia diosmoides
Eucalyptus occidentalis
Halosarcia perbrunata
Melaleuca (brophyi or johnsonii)
Melaleuca acuminata
Melaleuca hemulosa
Melaleuca lateriflora
Melaleuca strobophylla
Melaleuca uncinata
Neurachne alopecuroidea
Oparcularia vaginata

Legend: 1997 2000
Seedlings Dead

Figure 3.3.2a: Species Distribution along Coyrecup Transect 1 in 1997 and 2000.
Coyrecup - Transect 2

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia acuminata</td>
<td></td>
</tr>
<tr>
<td>Allocasuarina huegeli ana</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td></td>
</tr>
<tr>
<td>Danthonia sp.</td>
<td></td>
</tr>
<tr>
<td>Enchylaena tomentosa</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus loxophleba</td>
<td></td>
</tr>
<tr>
<td>Halosarcia pergranulata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td></td>
</tr>
<tr>
<td>Neurachne alopecuroidea</td>
<td></td>
</tr>
<tr>
<td>Sarcocornia quinquenora</td>
<td></td>
</tr>
</tbody>
</table>

Seedlings
D = Dead

Figure 3.3.2b: Species Distribution along Coyrecup Transect 2 in 1997 and 2000.

Coyrecup - Transect 3

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia acuminata</td>
<td></td>
</tr>
<tr>
<td>Carpobrotus sp.</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td></td>
</tr>
<tr>
<td>Austrodanthonia sp.</td>
<td></td>
</tr>
<tr>
<td>Dianella revoluta</td>
<td></td>
</tr>
<tr>
<td>Enchylaena tomentosa</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus loxophleba</td>
<td></td>
</tr>
<tr>
<td>Halosarcia pergranulata</td>
<td></td>
</tr>
<tr>
<td>Hemarthria uncinata</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td></td>
</tr>
<tr>
<td>Melaleuca uncinata</td>
<td></td>
</tr>
<tr>
<td>Neurachne alopecuroidea</td>
<td></td>
</tr>
<tr>
<td>Sarcocornia quinquellora</td>
<td></td>
</tr>
<tr>
<td>Austrostipa elegantissima</td>
<td></td>
</tr>
</tbody>
</table>

Seedlings
D = Dead

Figure 3.3.2c: Species Distribution along Coyrecup Transect 3 in 1997 and 2000.
Coyrecup - Transect 4

Carpobrotus sp.
Austrodanthonia sp.
Enchylaena tomentosa
Eucalyptus loxophleba
Eucalyptus spathulata
Halosarcia pergranulata
Lepidosperma longitudinale
Lomandra effusa
Melaleuca acuminata
Melaleuca adenostyla
Melaleuca lateriflora
Santa/um acuminatum
Austrostipa elegansima

Legend: I 2000
Figure 3.3.2d: Species Distribution along Coyrecup Transect 4 in 1997 and 2000.

Coyrecup - Transect 5

Carpobrotus sp.
Halosarcia pergranulata
Melaleuca adenostyla
Melaleuca halmaturorum
Melaleuca lateriflora
Santa/um acuminatum
Austrostipa elegansima

Legend: 1997 2000
Figure 3.3.2e: Species Distribution along Coyrecup Transect 5 in 1997 and 2000.
3.4 Lake Kulikup

3.4.1 Description

Kulikup Lake Nature Reserve (A class #18239) is an ephemeral wetland lying approximately 30 km east of Boyup Brook (33°49' S, 116°40' E). Inspection of aerial photography suggests inflow to the lake comes from a broad channel at the north of the reserve draining surrounding farmland and overflow from adjacent wetlands to the west. No obvious outflow point is apparent. Disturbances to the reserve include a disused gravel pit at the eastern side, a rail easement to the south, a disused tip at the north and anecdotal evidence that the edge of the wetland basin was used as a horse racing course in the 1940/50's.

Transect 1: (GPS: 50 469645 / 6257255) lies on the eastern side of the lake, approximately 30 m south of the northern edge of the disused gravel pit and runs for 60 m from the terrestrial vegetation out into the *Baumea articulata* of the lake basin.

Transect 2: (GPS: 50 469104 / 6257016) is situated on the south-western side of the lake, extending for 60 m from the terrestrial vegetation onto the lake basin.

Transect 3: (GPS: 50 469498 / 6256781) is placed similarly to the previous transect on the south-eastern side of the lake.

Transect 4: (GPS: 50 469339 / 6257249) is located in the *Melaleuca* woodland in the inlet and runs for 40 m from within the inlet onto the lake bed.

3.4.2 Plant Communities

The upslope areas of the reserve support a *Eucalyptus wandoo – Eucalyptus decipiens* woodland with an understorey dominated by *Desmocladus asper*, *Conostylis aculeata*, *Hakea lissocarpa* and *Baumea* sp. On the western side, *Melaleuca rhaphiophylla* is present in the understorey on the upslope regions. The littoral zone comprises a woodland of *Melaleuca cuticularis* with an understorey of *Baumea* sp. and *Baumea juncea*. The lake basin is entirely covered in *Baumea articulata*.

3.4.3 Population Structure and Tree Vigour

The vegetation communities of the upland, littoral and wetland basin areas of Lake Kulikup are in good condition with no evidence of stress due to salinity or waterlogging. Mean crown scores continue to be relatively high for the 4 overstorey species present within the transects (*E. wandoo, E. decipiens, M. cuticularis* and *M. rhaphiophylla*) with increases recorded for each species (Figure 3.4.1). Since 1997 there has been significant recruitment with an additional 170 seedlings recorded in 2000. Survival of *M. cuticularis* seedlings and saplings is evident in the bands formed around the wetland (Table 3.4.1). In addition 2 *E. wandoo* seedlings, 6 *E. decipiens* seedlings and 47 *M. rhaphiophylla* seedlings were found, none of which were recorded during the 1997 monitoring period. A large percentage of the populations of *M. rhaphiophylla*, *M. cuticularis* and *E. decipiens* are young trees (<2 and 5.1-10 cm diameter size classes) with only a few individuals recorded having a diameter greater than 15 cm. Only *M. cuticularis* has some individuals within the larger size classes (Figure 3.4.1). The population of *E. wandoo* shows a more even distribution across size classes, with more individuals in the larger size classes (Figure 3.4.1). The low soil and sediment salinities measured are also evident in the continued dense cover of *Baumea articulata* across the wetland basin.

Table 3.4.1: Summary of Kulikup Lake Tree Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus wandoo</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>2</td>
<td>15 (3.1)</td>
<td>17.8 (2.2)</td>
</tr>
<tr>
<td>Eucalyptus decipiens</td>
<td>22</td>
<td>21</td>
<td>0</td>
<td>6</td>
<td>11.9 (3.4)</td>
<td>14 (2.8)</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>324</td>
<td>321</td>
<td>14</td>
<td>184</td>
<td>14.7 (2.6)</td>
<td>16.5 (3.04)</td>
</tr>
<tr>
<td>Melaleuca rhaphiophylla</td>
<td>38</td>
<td>38</td>
<td>0</td>
<td>47</td>
<td>14.4 (1.9)</td>
<td>16.2 (1.89)</td>
</tr>
</tbody>
</table>

MCS – Mean crown score.
Few changes in understorey composition and cover were recorded for Transects 1 and 4, with the large loss in cover by *Meeboldina cana* in quadrat 1A of Transect 4 being the most significant change (Table 3.4.2). Transects 2 and 3 showed significant differences in species composition (T2: 1A - 2B, T3: 1A - 2B). Species such as *Desmocladus asper*, *Schoenus submicrostachyus* and *Lepidoperma longitudinale* show large reductions in cover values along Transect 3. These changes and cover reductions are most probably due to seasonal factors or possibly differences in the timing and/or amount of rainfall. Species diversity along all Kulikup transects remains high and indicates a healthy vegetation community. It should be noted that the introduced American grass species (Hussey, Keighery, Cousins, Dood and Lloyd, 1997) *Briza maxima* has appeared in several quadrats (T2: 1A - 2C, T3: 1A - C, 1E - 2C - see Figures 3.4.2a - d).

Table 3.4.2: Brief Summary of Changes to the Understorey at Lake Kulikup Transects

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Little Change.</td>
<td>Lost 6, gained 5 sp, 1 introduced.</td>
<td>Lost 8, gained 4 sp, 1 introduced.</td>
<td>Meeboldina cana - 1997 20%, 2000 1.5%</td>
</tr>
<tr>
<td>1B</td>
<td>Little Change.</td>
<td>Lost 4, gained 4 sp, 1 is introduced.</td>
<td>Desmocladus asper - 1997 40%, 2000 8%</td>
<td>Little Change.</td>
</tr>
<tr>
<td>1C</td>
<td>Little Change.</td>
<td>Lost 2, gained 6 sp, 1 is introduced.</td>
<td>Little Change.</td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>Little Change.</td>
<td>Lost 4, gained 1 sp, which is introduced.</td>
<td>Schoenus submicrostachyus - 1997 30%, 2000 nil</td>
<td>Little Change.</td>
</tr>
<tr>
<td>1E</td>
<td>No Change.</td>
<td>Lost 5, gained 6 sp, 1 is introduced.</td>
<td>Little Change.</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>No Change.</td>
<td>Lost 5, gained 3 sp, 1 is introduced.</td>
<td>Little Change.</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>Little Change.</td>
<td>Little change, but add. 1 introduced sp.</td>
<td>Little change, but add. 1 introduced sp.</td>
<td>No Change.</td>
</tr>
<tr>
<td>2D</td>
<td>No Change.</td>
<td>Little Change.</td>
<td>Little Change.</td>
<td>No Change.</td>
</tr>
</tbody>
</table>

3.4.4 Soil Characteristics

Soil salinity is low both in the upland regions and on the lake basin of this wetland (Appendix 1) although there has been a moderate increase in the salinity of soils near the lake bed and on lower slopes since 1997. During monitoring in 2000 the lower slopes and the lake bed experienced soil salinities well over 100 mS/cm compared to 30-40 mS/cm recorded in 1997. Soils are generally grey/brown sands on the slopes around the lake becoming dark silty sands in the littoral zone. Ironstone is present on the slopes of the western side of the lake. The soils of the inlet channel are very organic dark silts and sandy silt.

3.4.5 Summary

Lake Kulikup is currently unaffected by secondary salinisation and supports upland and littoral vegetation in very good condition, with the mean crown score for each overstorey species increasing since 1997. As in 1997, the lake has the lowest soil salinities of all the lakes surveyed, with a slight increase in soil salinities recorded in 2000. Some natural regeneration of the bushland is occurring at the old tip site to the north of the lake and the disused gravel pit is to be rehabilitated by the Central Forests Region CALM office. The high diversity of understorey species, the wide and dense lake bed coverage of *Baumea articulata*, the wider variety in tree ages and the prolific recruitment of wetland trees *M. cuticularis* and *M. rhaphiophylla* are all indications that this wetland continues to be healthy.
Salinity Action Plan. Wetland Vegetation Monitoring 2000/01

Eucalyptus wando

![Graph showing size class distributions of Eucalyptus wando for 1997 and 2000.]

N.B. Due to differences in size class categorisation, data for the <2 and 2.1-5 size classes cannot be shown for 1997.

Eucalyptus decipiens

![Graph showing size class distributions of Eucalyptus decipiens for 1997 and 2000.]

N.B. Due to differences in size class categorisation, data for the <2 and 2.1-5 size classes cannot be shown for 1997.

Figure 3.4.1: Size Class Distributions of E. wando, E. decipiens, M. rhaphiophylla and M. cuticularis for Lake Kulikup.
Melaleuca raphiophylla

![Bar chart for Melaleuca raphiophylla](image)

N.B. Due to differences in size class categorisation, data for the <2 and 2.1-5 size classes cannot be shown for 1997.

Melaleuca cuticularis

![Bar chart for Melaleuca cuticularis](image)

N.B. Due to differences in size class categorisation, data for the <2 and 2.1-5 size classes cannot be shown for 1997.

Figure 3.4.1 (cont.): Size Class Distributions of *E. wando*, *E. decipiens*, *M. raphiophylla* and *M. cuticularis* for Lake Kulikup.
Salinity Action Plan. Wetland Vegetation Monitoring 2000/01

Kulikup - Transect 1

Acacia stenoptera
Austrodanthonia caespitosa
Astroloma pallidum
Baumea articulata
Baumea juncea
Baumea sp.
Bossiaea eriocarpa
Conostylis aculeata
Desmoclados asper
Eucalyptus decipiens
Eucalyptus wandoo
Hypolaena exsulca
Melaleuca cuticularis
Melaleuca rhiphophylla
Sollya heterophylla
Stylium schoenoides

Legend:

\[1 \equiv \text{Seedlings} \]
\[2 \equiv \text{Dead} \]

Figure 3.4.2a: Species Distribution along Kulikup Transect 1 in 1997 and 2000.

Kulikup - Transect 2

Astroloma ciliatim
Astroloma pallidum
Austrodanthonia caespitosa
Baumea articulata
Baumea juncea
Bossiaea eriocarpa
Briza maxima
Cassytha glabella
Conostylis aculeata

Figure 3.4.2b: Species Distribution along Kulikup Transect 2 in 1997 and 2000.

Kulikup - Transect 2 cont.

Desmoclados asper
Figure 3.4.2b cont.: Species Distribution along Kulikup Transect 2 in 1997 and 2000.
Figure 3.4.2c: Species Distribution along Kulikup Transect 3 in 1997 and 2000.
Figure 3.4.2c cont.: Species Distribution along Kulikup Transect 3 in 1997 and 2000.
Figure 3.4.2d: Species Distribution along Kulikup Transect 4 in 1997 and 2000.
3.5 Noobijup Lake

3.5.1 Description

Noobijup Lake Nature Reserve (A class #26680, 34°24' S, 116°46' E) is located in the Lake Muir catchment and covers an area of 183 ha, with around one third of this as wetland basin. The catchment immediately surrounding the lake has been substantially altered by road construction along the northern boundary and extensive clearing of native vegetation for farming. As a result of increasing groundwater levels, a saline seep has developed on the western side of the reserve and is encroaching towards the wetland basin. The inlet channel at the southern end of the wetland drains large areas of the cleared catchment and is also thought to be increasingly saline. Ryder, (unpublished data, 1998) reports water levels varying from 1.2 m to 0.4 m with a much lower seasonal trend than other wetlands in the catchment. A clay layer around 1.2 m below the sediment surface may indicate the wetland is perched. The reserve was subjected to a prescription burn in spring 1986 and no evidence of further fires is apparent.

Transect 1: (GPS: 50 479875 / 6193127) is positioned running north-south in the shrubland adjacent to the salt seep on the western side of the reserve.

Transect 2: (GPS: 50 479889 / 6193251) is situated directly towards the lake from transect 1 running for 40 m up the slope of the ridge around the western edge of the lake.

Transect 3: (GPS: 50 48419 / 6193621) is accessed from Noobijup Rd approximately 550 m west of the eastern boundary road. It lies on fairly flat ground and consists of three 20 x 20 m plots and extends out into the *Baumea articulata* community in the lake.

Transect 4: (GPS: 50 480428 / 6192169) runs for 60 m from the terrestrial vegetation down into the lake and is positioned 60 m east of the inlet drain.

Transect 5: (GPS: 50 480674 / 6192457) is accessed from the track on the eastern side of the lake and extends for 60 m from the terrestrial vegetation into the lake.

3.5.2 Plant Communities

The dryland areas of the reserve are dominated by a *Eucalyptus marginata* – *Corymbia calophylla* woodland with an understorey dominated by *Xanthorrhoea* sp, *Macrozamia riedlei*, *Bosssiae linophylla*, *Leucopogon* sp, and *Lomandra* sp. The shrubland associated with the seep on the western side of the reserve is dominated by *Calothamnus lateralis*, *Melaleuca radula*, *M. viminea* subsp *viminea*, *Asartea fascicularis* and *Lepidosperma longitudinale*. The littoral zone of the wetland basin has an overstorey of *Melaleuca raphiophylla*, *Eucalyptus rudis*, *Banksia littoralis* and *Viminaria juncea* with an understorey of *Lepidosperma longitidnale*, *Baumea juncea*, *B. arthrophylla* and *B. articulata*. The *B. arthrophylla* and *B. articulata* continues out up to 150 m into the water body. The condition of the rushes, littoral vegetation and the shrubland around the seep is declining presumably due to the effects of increasing salinity.

3.5.3 Population Structure and Tree Vigour

The trees of the upland vegetation were in excellent condition (Table 3.5.1). Although a few very large individuals (>70 cm DBH) were recorded, the majority of the overstorey population remains in the 5-15 cm diameter size classes (Figure 3.5.1). The population structure and vigour of the overstorey species has not changed significantly since 1997, with *Viminaria juncea* being the exception. Seedlings of both *C. calophylla* and *E. marginata* were present in the transects, with 74 more seedlings/saplings of *C. calophylla* recorded than in 1997. As in 1997 *M. raphiophylla* individuals located in the littoral zone are showing considerable signs of stress, which may be due to the increasing salinity of the lake water (mean crown score 10.3). The small sample of *E. rudis* trees are still in good condition (mean crown score of 13.3) however, many trees were observed with

<table>
<thead>
<tr>
<th>Table 3.5.1: Summary of Tree Data for Noobijup Lake.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Corymbia calophylla</td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
</tr>
<tr>
<td>Eucalyptus rudis</td>
</tr>
<tr>
<td>Acacia cyclops</td>
</tr>
<tr>
<td>Melaleuca raphiophylla</td>
</tr>
<tr>
<td>Banksia littoralis</td>
</tr>
<tr>
<td>Viminaria juncea</td>
</tr>
</tbody>
</table>

MCS - Mean crown score
poor crown condition outside the study plots. The greatest loss in vigour has been experienced by the *V. juncea* population, where 40% of the population has died since 1997. Many extra individuals of *E. occidentalis* and *M. cuticularis* have been tagged during this monitoring period due to large increases in growth of seedlings/saplings.

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
<th>Transect 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>No Change</td>
<td>Gained 6 sp</td>
<td>Gained 5 sp</td>
<td>Lost 1, gained 7 species</td>
<td>Lost 2, gained 4 species</td>
</tr>
<tr>
<td>1B</td>
<td>Little Change</td>
<td>Lost 2, gained 6 species</td>
<td>Lost 2, gained 9 species</td>
<td>Lost 1, gained 4 species</td>
<td>Gained 5 species</td>
</tr>
<tr>
<td>1C</td>
<td>Little Change</td>
<td>Lost 2, gained 4 species</td>
<td>Lost 1, gained 7 species</td>
<td>Little Change</td>
<td>Lost 1, gained 8 species</td>
</tr>
<tr>
<td>1D</td>
<td>Little Change</td>
<td>Lost 3, gained 7 species</td>
<td>Lost 2, gained 7 species</td>
<td>Lost 1, gained 6 species</td>
<td>Gained 6 species</td>
</tr>
<tr>
<td>1E</td>
<td>Little Change</td>
<td>Gained 7 sp</td>
<td>Lost 3, gained 5 species</td>
<td>Lost 1, gained 5 sp</td>
<td>Gained 8 species</td>
</tr>
<tr>
<td>2A</td>
<td>No Change</td>
<td>Gained 4 sp</td>
<td>Little Change</td>
<td>Lost 2, gained 5 sp</td>
<td>Macrozamia riedlei – 1997 20%, 2000 93%</td>
</tr>
<tr>
<td>2B</td>
<td>Little Change</td>
<td>Lost 1, gained 4 species</td>
<td>Lost 4, gained 6 species</td>
<td>Little Change</td>
<td>Agonis parviceps – 1997 13%, 2000 23%</td>
</tr>
<tr>
<td>2C</td>
<td>Little Change</td>
<td>Lost 1, gained 4 species</td>
<td>Lost 2, gained 4 species</td>
<td>Little Change</td>
<td>Hibbertia amplexicaulis – 1997 14%, 2000 0%</td>
</tr>
<tr>
<td>2D</td>
<td>Lost 4, gained 1 species</td>
<td>Lost 3, gained 9 species</td>
<td>Little change, but add 1 introd. species?</td>
<td>Little change, but add 1 introd. species?</td>
<td>Little change</td>
</tr>
<tr>
<td>2E</td>
<td>Little Change</td>
<td>Lost 4, gained 9 species</td>
<td>Little Change</td>
<td>Baumea juncea – 1997 50%, 2000 89%</td>
<td>Little Change</td>
</tr>
<tr>
<td>3B</td>
<td>Little Change</td>
<td>Baumea arthrophylla – 1997 50%, 2000 15%</td>
<td>Baumea articulata – 1997 20%, 2000 5%</td>
<td>Baumea arthrophylla – 1997 40%, 2000 5%</td>
<td></td>
</tr>
</tbody>
</table>

Changes recorded in understory composition and cover may largely be due to seasonal factors or possibly differences in the timing and/or amount of rainfall. Some species showed a significant reduction in cover, most notably *Macrozamia riedlei* (T4: 2A, T5: 1C), *Tetaria capillaries* (T4: 1B and 2A) and *Hibbertia amplexicaulis* (T5: 2D). *Baumea arthrophylla* was lost or significantly declined in lower elevation quadrats of Transect 4 and 5 and may have been replaced by *Triglochin* species. However, new species have also been recorded, for example *Bosistea linophylla* (T2: 1A – 3E, T3: 2A-D and T5: 1A – 2D), *Scaevola striata* (T2: 1A – 3E) and *Tricoryne humilis* (T3: 1A – 2C). Species diversity along all Noobijup transects remains high and indicates a healthy vegetation community. It should be noted that a small number of *Physalis minima* have been recorded in Transects 3 and 4 (Table 3.5.2 and Figures 3.5.2a to e). This species may be an exotic in the Noobijup area (Hussey, Keighery, Couzens, Dood and Lloyd, 1997).
3.5.4 Soil Characteristics

Soil salinity has increased slightly since 1997. Soil salinity ranged from 15 mS/cm in the upland regions through to 473 mS/cm in the shrubland adjacent to the salt seep compared to 5 mS/cm and 325 mS/cm recorded in the same locations in 1997 (Appendix 1). The transects around the wetland basin show very low salinities in the upland regions with a gradual increase in the soils toward the wetland. Higher salinity was found in the soils adjacent to the littoral zone (145 to 208 mS/cm). Transect 2 showed a similar pattern on the western ridge with salinity increasing at the bottom of the slope near the seep.

3.5.5 Summary

Currently, the vegetation of the Noobijup Lake Nature Reserve is in good condition with the highest species diversity of all the wetlands recorded in the 1997 and 2000 monitoring periods. Although inputs of saline water from the seep on the western side and the inlet channel at the southern end have likely increased since 1997, the condition of the littoral vegetation has not significantly deteriorated, however, the reduction in coverage and density of *Baumea articulata* and *B. arthrophylla* may be due to changes in the lake's hydrological regime. Large areas of the shrubland around the western seep have already been lost and the high salinities appear to be encroaching both northwards and to the west. The vegetation on the eastern side of the western ridge is currently in good condition, however, some dying stems can be seen on the slope, which may suggest saline groundwater is moving towards the ridge. A high diversity of understorey species and the good condition of the overstorey species have again been recorded during the 2000 survey. Of concern is the low recruitment rate and establishment success of some of the wetland and terrestrial tree species. Inspection of the aerial photograph shows a high incidence of plant deaths on and around the drains on the private property to the south of the reserve that feed into the southern inlet channel. This saline flow has affected the vegetation of the reserve up to the access track and is likely to cause further damage in the reserve over time.
Figure 3.5.1: Size Class Distributions for Corymbia calophylla, Eucalyptus marginata, Melaleuca rhaplophylla, Banksia littoralis and Viminaria juncea at Noobijup Lake.
Melaleuca rhaphiophylla

![Graph showing size class distributions for Melaleuca rhaphiophylla in 1997 and 2000.]

Figure 3.5.1(cont.): Size Class Distributions for *Corymbia calophylla*, *Eucalyptus marginata*, *Melaleuca rhaphiophylla*, *Banksia littoralis* and *Viminaria juncea* at Noobijup Lake.
Viminaria juncea

![Viminaria juncea graph]

Figure 3.5.1(cont.): Size Class Distributions for Corymbia calophylla, Eucalyptus marginata, Melaleuca rhapsiophylla, Banksia littoralis and Viminaria juncea at Noobijup Lake.

Noobijup - Transect 1

- *Astartea aff fascicularis*
- *Calothamnus lateralis*
- *Cassytha racemosa*
- *Lepidosperma longitudinale*
- *Leptocarpus sp.*
- *Meeboldina cana*
- *Melaleuca densa*
- *Melaleuca lanceolata*
- *Melaleuca lateritia*
- *Melaleuca pauciflora*
- *Melaleuca radula*
- *Melaleuca rhapsiophylla*
- *Melaleuca viminea viminea*

Legend:
- **1997**
- **2000**
- **Seedlings**
- **D = Dead**

Figure 3.5.2a: Species Distribution along Noobijup Transect 1 in 1997 and 2000.
<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia extensa</td>
<td></td>
</tr>
<tr>
<td>Astroloma ciliatum</td>
<td></td>
</tr>
<tr>
<td>Astroloma pallidum</td>
<td></td>
</tr>
<tr>
<td>Boronia spathulata</td>
<td></td>
</tr>
<tr>
<td>Bossiaea linophylla</td>
<td></td>
</tr>
<tr>
<td>Conostylis aculeata</td>
<td></td>
</tr>
<tr>
<td>Conostylis sp.</td>
<td></td>
</tr>
<tr>
<td>Corymbia calophylla</td>
<td></td>
</tr>
<tr>
<td>Austrodanthonia sp.</td>
<td></td>
</tr>
<tr>
<td>Dampiera alata</td>
<td></td>
</tr>
<tr>
<td>Dampiera linearis</td>
<td></td>
</tr>
<tr>
<td>Desmocladus fasciculata</td>
<td></td>
</tr>
<tr>
<td>Dianella revoluta</td>
<td></td>
</tr>
<tr>
<td>Dryandra nivea</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td></td>
</tr>
<tr>
<td>Gompholobium knightianum</td>
<td></td>
</tr>
<tr>
<td>Gompholobium preissii</td>
<td></td>
</tr>
<tr>
<td>Haemodorum sp.</td>
<td></td>
</tr>
<tr>
<td>Hakea lissocarpha</td>
<td></td>
</tr>
<tr>
<td>Hakea prostrata</td>
<td></td>
</tr>
<tr>
<td>Hibbertia amplexicaulis</td>
<td></td>
</tr>
<tr>
<td>Hibbertia commutata</td>
<td></td>
</tr>
<tr>
<td>Hibbertia racemosa</td>
<td></td>
</tr>
<tr>
<td>Hypocalymma angustifolium</td>
<td></td>
</tr>
<tr>
<td>Hypoalaena exsulca</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma squamatum</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2b: Species Distribution along Noobijup Transect 2 in 1997 and 2000.
<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucopogon propinquus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon revolutus</td>
<td></td>
</tr>
<tr>
<td>Logania serpyllifolia</td>
<td></td>
</tr>
<tr>
<td>Lomandra nigricans</td>
<td></td>
</tr>
<tr>
<td>Lomandra sericea</td>
<td></td>
</tr>
<tr>
<td>Loxocarya sp.</td>
<td></td>
</tr>
<tr>
<td>Lyginia barbata</td>
<td></td>
</tr>
<tr>
<td>Microlaena stipoides</td>
<td></td>
</tr>
<tr>
<td>Opercularia hispidula</td>
<td></td>
</tr>
<tr>
<td>Scaevola striata</td>
<td></td>
</tr>
<tr>
<td>Soliya heterophylla</td>
<td></td>
</tr>
<tr>
<td>Stylidium repens</td>
<td></td>
</tr>
<tr>
<td>Stylidium spathulatum</td>
<td></td>
</tr>
<tr>
<td>Synaphaeae sp.</td>
<td></td>
</tr>
<tr>
<td>Tetraria octandra</td>
<td></td>
</tr>
<tr>
<td>Tetrarhena laevis</td>
<td></td>
</tr>
<tr>
<td>Tricoryne humilis</td>
<td></td>
</tr>
<tr>
<td>Trymallum floribundum</td>
<td></td>
</tr>
<tr>
<td>Xanthorrhoea preissii</td>
<td></td>
</tr>
<tr>
<td>Xanthosia huegelii</td>
<td></td>
</tr>
<tr>
<td>Xanthosia sp.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2b cont.: Species Distribution along Noobijup Transect 2 in 1997 and 2000.

Legend: 1997
2000
Seedlings
D = Dead
Figure 3.5.2c: Species Distribution along Noobijup Transect 3 in 1997 and 2000.
<table>
<thead>
<tr>
<th>Species</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolepis nodosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedia prostrata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennedia sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosperma squamatum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosperma leptostachyum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosperma longitudinale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucopogon propinquus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucopogon revolutus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomandra nigricans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyginia barbata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrozamia riedlei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca raphiophylla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurachne alopecuroidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opercularia echinocephala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opercularia hispidula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patersonia occidentalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patersonia pygmaea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllanthus calycinus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physalis minima?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaevola striata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sollya heterophylla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrostipa sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stypandra glauca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synapheae sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragonia capillaris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragonia octandra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2c cont.: Species Distribution along Noobijup Transect 3 in 1997 and 2000.
Noobijup - Transect 3 cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricoryne humilis</td>
<td></td>
</tr>
<tr>
<td>Triglochin huegelii</td>
<td></td>
</tr>
<tr>
<td>Triglochin lineare hueglii</td>
<td></td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trymaliwm floribundum</td>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valarisia sp.</td>
<td></td>
</tr>
<tr>
<td>Valarisia albiflora</td>
<td></td>
</tr>
<tr>
<td>Xanthorrhoea preissii</td>
<td></td>
</tr>
<tr>
<td>Xanthosia sp.</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **1997**
- **2000**
- **Seedlings**
- **D** = Dead

Figure 3.5.2c cont.: Species Distribution along Noobijup Transect 3 in 1997 and 2000.

Noobijup - Transect 4

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cyclops</td>
<td></td>
</tr>
<tr>
<td>Acacia extensa</td>
<td></td>
</tr>
<tr>
<td>Astroloma pallidum</td>
<td></td>
</tr>
<tr>
<td>Banksia littoralis</td>
<td></td>
</tr>
<tr>
<td>Baumea arthrophylla</td>
<td></td>
</tr>
<tr>
<td>Baumea articulata</td>
<td></td>
</tr>
<tr>
<td>Baumea juncea</td>
<td></td>
</tr>
<tr>
<td>Boronia spathulata</td>
<td></td>
</tr>
<tr>
<td>Bossiaea linophylla</td>
<td></td>
</tr>
<tr>
<td>Brachysema melanopetalum</td>
<td></td>
</tr>
<tr>
<td>Conostylis aculeata</td>
<td></td>
</tr>
<tr>
<td>Corymbia calophylla</td>
<td></td>
</tr>
<tr>
<td>Cyperaceae sp.</td>
<td></td>
</tr>
<tr>
<td>Dampiera alata</td>
<td></td>
</tr>
<tr>
<td>Austrodanthonia sp.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2d: Species Distribution along Noobijup Transect 4 in 1997 and 2000.
Noobijup - Transect 4 cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>3A</th>
<th>3B</th>
<th>3C</th>
<th>3D</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmocladus fasciculata</td>
<td></td>
</tr>
<tr>
<td>Dianella revoluta</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td></td>
</tr>
<tr>
<td>Gompholobium marginatum</td>
<td></td>
</tr>
<tr>
<td>Gompholobium tomentosum</td>
<td></td>
</tr>
<tr>
<td>Hakea sessilis</td>
<td></td>
</tr>
<tr>
<td>Hakea prostrata</td>
<td></td>
</tr>
<tr>
<td>Hibbertia amplexicaulis</td>
<td></td>
</tr>
<tr>
<td>Hibbertia commutata</td>
<td></td>
</tr>
<tr>
<td>Hibbertia racemosa</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma squamatum</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma longitudinale</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
<tr>
<td>Leptospermium cunninghamii</td>
<td></td>
</tr>
<tr>
<td>Leucopogon parviflorus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon propinquus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon revolutus</td>
<td></td>
</tr>
<tr>
<td>Lomandra nigricans</td>
<td></td>
</tr>
<tr>
<td>Macropia ridleyi</td>
<td></td>
</tr>
<tr>
<td>Melaleuca rhiophylla</td>
<td></td>
</tr>
<tr>
<td>Nemzia capitata</td>
<td></td>
</tr>
<tr>
<td>Neurachne alopecuroidea</td>
<td></td>
</tr>
<tr>
<td>Oparrularia echnicophora</td>
<td></td>
</tr>
<tr>
<td>Oparrularia hispidula</td>
<td></td>
</tr>
<tr>
<td>Phyllanthus calycinus</td>
<td></td>
</tr>
<tr>
<td>Physalis minima</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2d cont.: Species Distribution along Noobijup Transect 4 in 1997 and 2000.
Figure 3.5.2d cont.: Species Distribution along Noobijup Transect 4 in 1997 and 2000.

Figure 3.5.2e: Species Distribution along Noobijup Transect 5 in 1997 and 2000.
Noobijup - Transect 5 cont.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conostylis aculeata</td>
<td>1A 1B 1C 1D 1E 2A 2B 2C 2D 2E 3A 3B 3C 3D 3E</td>
</tr>
<tr>
<td>Corymbia calophylla</td>
<td></td>
</tr>
<tr>
<td>Dasypogon bromeliifolius</td>
<td></td>
</tr>
<tr>
<td>Desmoclados fasciculata</td>
<td></td>
</tr>
<tr>
<td>Dianella revoluta</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td></td>
</tr>
<tr>
<td>Gompholobium polymorphum</td>
<td></td>
</tr>
<tr>
<td>Gompholobium tomentosum</td>
<td></td>
</tr>
<tr>
<td>Hibbertia amplexicaulis</td>
<td></td>
</tr>
<tr>
<td>Hibbertia commutata</td>
<td></td>
</tr>
<tr>
<td>Hibbertia racemosa</td>
<td></td>
</tr>
<tr>
<td>Hybanthus floribundus</td>
<td></td>
</tr>
<tr>
<td>Hypolaena exsticca</td>
<td></td>
</tr>
<tr>
<td>Labichea punctata</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma squamatum</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma longitudinale</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
<tr>
<td>Leucopogon propinquus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon revolutus</td>
<td></td>
</tr>
<tr>
<td>Logania serpylifolia</td>
<td></td>
</tr>
<tr>
<td>Lomandra nigricans</td>
<td></td>
</tr>
<tr>
<td>Lomandra sp.</td>
<td></td>
</tr>
<tr>
<td>Macrozamia riedlei</td>
<td></td>
</tr>
<tr>
<td>Melaleuca rhaphiophylla</td>
<td></td>
</tr>
<tr>
<td>Melaleuca thymoides</td>
<td></td>
</tr>
<tr>
<td>Neurachne alopecuroidea</td>
<td></td>
</tr>
<tr>
<td>Opercularia hispida</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.5.2e cont.: Species Distribution along Noobijup Transect 5 in 1997 and 2000.
Figure 3.5.2e cont.: Species Distribution along Noobijup Transect 5 in 1997 and 2000.
3.6 Lake Toolibin

3.6.1 Description

Lake Toolibin Nature Reserve (A class #24556, 32°56' S, 111°11' E) lies in the Northern Arthur River catchment at the head of a chain of lakes forming the headwaters of the Northern Arthur River. The majority of land within the catchment was cleared by the 1950s with evidence of salinity and waterlogging appearing in some lakes as early as the 1920s (NARWC, 1992). During this time Lake Toolibin has remained comparatively fresh while other lakes have been severely affected by secondary salinisation (Froend et al., 1987). In the early 1970s, stressed and dead trees were reported in parts of Lake Toolibin when surface salt crusting first became evident (Froend et al., 1987). Since this time there has been a general decline in the health of the *Casuarina obesa* – *Melaleuca strobophylla* stands on the lake bed (Froend et al., 1987; Mattiske, 1993). Along with catchment revegetation and drainage works aimed at reducing salinities in the Northern Arthur River, a diversion channel was constructed along the western boundary of the lake in 1994/95 to divert saline flows around the lake, protecting both Toolibin and Walbyring lakes (Froend et al., 1996).

Transect 1: (GPS: 50 556840 / 6356371) is located in the south-west corner of the lake on the lake bed. Extending for 40 m, the transect lies in a *C. obesa* – *M. strobophylla* woodland occurring in a broad area of gilgai mounds.

Transect 2: (GPS: 50 556855 / 6357750) lies in the north-west area of the lake, extending for 60 m from within a *C. obesa* – *M. strobophylla* woodland into the open area, which dominates the east side of the lake.

Transect 3: (GPS: 50 557488 / 6357073) is located along approximately the same coordinates as a transect established by R. Froend in 1983 on the eastern side of the lake consisting of three 20 x 20 m plots extending from the upland vegetation onto the lake bed.

Transect 4: (GPS: 50 556032 / 6357662) occupies the area of gilgai mounds in the south-west corner of the lake characterised by dense stands of *C. obesa* restricted to the mounds. The transect is 40 m long and samples dense stands of trees and open ground between the mounds.

3.6.2 Plant Communities

With the loss of the Eucalypt trees due to increasing salinity and waterlogging, only two tree species remain on the lake bed; *C. obesa* and *M. strobophylla* (Froend et al., 1996). These species occur in woodlands across the lake bed, often restricted to the gilgai mounds. The understorey consists of halophytic species with some annual weeds occurring towards the perimeter of the lake bed. The upland vegetation is highly modified on the western and southern sides due to the construction of the drain and revegetation of cleared areas. The eastern and northern sides are dominated by a woodland of *Eucalyptus loxophleba* – *Acacia acuminata*. A full description of the plant communities of the reserve is provided by Mattiske (1993).

3.6.3 Population Structure and Tree Vigour

An absence of seedlings of *C. obesa* and to a lesser extent *M. strobophylla* has been noted on the reserve previously. As in 1997, size class distribution data for 2000 (Figure 3.6.1) still shows the populations of these species to be dominated by stems in the 5 to 15 cm diameter size classes with some juveniles (typically <2 cm – <10 cm in height) present. More importantly, there has been a significant loss of these individuals since initial monitoring in 1997 (Table 3.6.1). Mean Crown Scores for both species were fairly low, reflecting the stresses of high soil salinities (Froend et al., 1987). Vigour of the overstorey species has not changed significantly since 1997.

<table>
<thead>
<tr>
<th>Table 3.6.1: Summary of Tree Data for Lake Toolibin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Casuarina obesa</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
</tr>
<tr>
<td>Acacia acuminata</td>
</tr>
<tr>
<td>Eucalyptus rudis</td>
</tr>
</tbody>
</table>

MCS – Mean crown score
Few significant changes in understory composition and cover were recorded at Lake Toolibin (Table 3.6.2). It is interesting to note that *Halosarcia lepidosperma* has appeared in Transects 1, 2 and 4. *H. pergranulata* has been almost completely lost from Transect 3, however, it gained a foothold on Transect 1 (2E) and has appeared throughout quadrats 1A to E and 2B and C of Transect 2 (Figures 3.6.2a to d).

Table 3.6.2: Brief Summary of Changes to the Understorey at Lake Toolibin Transects.

<table>
<thead>
<tr>
<th>Quadr</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>No Change.</td>
<td>Gained 1 - Halosarcia pergranulata</td>
<td>No Change?</td>
<td>No Change.</td>
</tr>
<tr>
<td>1E</td>
<td>(No Understorey)</td>
<td>Gained 2, incl. H. pergranulata</td>
<td>No Change?</td>
<td>New understorey of H. lepidosperma</td>
</tr>
<tr>
<td>2A</td>
<td>Little Change.</td>
<td>Gained 1 - H. lepidosperma</td>
<td>No Change.</td>
<td>New understorey of H. lepidosperma</td>
</tr>
<tr>
<td>2B</td>
<td>Little Change.</td>
<td>Lost 1, gained H. pergranulata</td>
<td>No Change.</td>
<td>Little Change.</td>
</tr>
<tr>
<td>2C</td>
<td>Little Change.</td>
<td>Lost 1, gained H. pergranulata</td>
<td>No Change.</td>
<td>Little Change.</td>
</tr>
<tr>
<td>2D</td>
<td>Little Change.</td>
<td>Lost 1, gained H. lepidosperma</td>
<td>Halosarcia pergranulata 1997 50% 2000 10%</td>
<td>Little Change.</td>
</tr>
<tr>
<td>3A</td>
<td>New understorey of H. lepidosperma</td>
<td>Little Change.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>(No Understorey)</td>
<td>Lost H. pergranulata.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>New understorey of H. lepidosperma</td>
<td>Lost H. pergranulata.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Lost 1, gained H. lepidosperma</td>
<td>Lost H. pergranulata. (1997 4 1%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>(No Understorey)</td>
<td>Lost H. pergranulata.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

3.6.4 Soil Characteristics

Soil salinities have declined mildly since 1997, with a range of 18 mS/cm at the highest point on the lake fringe of Transect 3 to 744 mS/cm in a depression on Transect 4, compared to 28 mS/cm and 794 mS/cm recorded in similar locations in 1997 (Appendix 1). Salinity is highest on the south-western area of the lake bed where salt seepage has been recorded in the past (Froend et al., 1996). Similar levels of salinity are recorded in Transects 2 and 3 on the eastern side of the lake. Relatively low conductivity was recorded in Transect 1 at the south-eastern side of the lake (77-201 mS/cm). A general trend of lower salinity on the gilgai mounds and higher salinity in depressions is apparent when the profile data and EM38 data is compared. Seedlings were found in the lowest and highest soil salinity areas, although reductions in vigour since 1997 were evident.

3.6.5 Summary

The general decline in the health of the vegetation of the lake described by Froend et al. (1996) has led to the loss of the Eucalypt overstorey, leaving a stressed *C. obesa* and *M. strophophylla* population. While the results show the population is not senescent, concern over the recruitment potential has been expressed. Ogden (1997) hypothesised that the current *C. obesa* population may be the result of periodic mass recruitment events, which, under the current salinity status and hydrological regime, may be unlikely to occur again. At the same time, a low level of 'background' recruitment may contribute to the population although the lack of saplings on the lake suggests that these seedlings are not persisting. The seedlings found in the study sites are likely to fit into the latter category of recruitment and 2000 data suggests that these will not persist to maturity. With improving soil salinity and groundwater levels as a result of the remediation works, more successful recruitment events are possible. The upland vegetation of the lake fringe has a very species poor understorey dominated by annual plants. Mattiske (1993) states that the *E. loxophleba – A. acuminata* woodland of the lake fringe has declined during the study period (1977-1993) with only the occasional *A. acuminata* seedling appearing. The understorey continues to be dominated by *Halosarcia* species (samphires), which indicate relatively saline site conditions.
Figure 3.6.1: Size Class Distributions of *Melaleuca strobophylla* and *Casuarina obesa* at Lake Toolibin
Toolibin - Transect 1

Legend: 1997 2000

Seedlings
D = Dead

Figure 3.6.2a: Species Distribution along Toolibin Transect 1 in 1997 and 2000.

Toolibin - Transect 2

Legend: 1997 2000

Seedlings
D = Dead

Figure 3.6.2b: Species Distribution along Toolibin Transect 2 in 1997 and 2000.

Toolibin - Transect 3

Legend: 1997 2000

Seedlings
D = Dead

Figure 3.6.2c: Species Distribution along Toolibin Transect 3 in 1997 and 2000.
Toolbin - Transect 4

<table>
<thead>
<tr>
<th>Casuarina obesa</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halosarcia lepidosperma</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halosarcia pergranulata</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **1997**: Seedlings
- **2000**: Dead

Figure 3.6.2d: Species Distribution along Toolbin Transect 4 in 1997 and 2000.
3.7 Lake Towerrinning

3.7.1 Description

Lake Towerrinning, a class A Nature Reserve (#24917), situated 32 km south of Darkan (33°35' S, 116°48' E), is a permanent wetland currently classified as brackish with improving water quality. Froend et al. (1991) provide a description of the decline in water quality and the surrounding vegetation from the 1960s to the mid-1980s. Agricultural clearing reduced the vegetation to a narrow peripheral band, which in turn was severely affected by increasing soil salinity and flooding. Recent modifications to the drainage of the lake by the Department of Agriculture have resulted in an improvement in water quality.

Transect location at this wetland was restricted by the lack of remnant vegetation. On the eastern side of the lake, fringing vegetation is restricted to one short, narrow band adjacent to the public car park. This area was not included in the survey due to its proximity to public access areas. The remaining vegetation is predominantly restricted to the western side of the lake around the major inlet channel. Three transects are located in this vegetation remnant.

Transects 1 and 3 are located on the property of Ian and Theresa Pearce.

Transect 1: (GPS: 50 479191 / 6284239) extends for 40 m on the southern end of the peninsula separating the lake from the inlet swamp.

Transect 2: (GPS: 50 479235 / 6284507) is located on the Abbott's property approximately 100 m east of Transect 1 and consists of one 20 x 20 m plot located in the narrow band of remnant vegetation around the north-western edge of the lake.

Transect 3: (GPS: 50 479347 / 6284490) is situated on the northern side of the inlet swamp and consists of only one 20 x 20 m plot.

3.7.2 Plant Communities

The narrow band of vegetation that remains around the lake inlet is predominantly *Melaleuca rhaphiophylla* and *Eucalyptus rudis* woodland. This vegetation type occupies the relatively shallow gradient of the lake and inlet perimeter. Partially submerged dead *Melaleuca rhaphiophylla* stems are present below the high water line. Understorey composition is dominated by *Lepidosperma longitudinale* in Transects 1 and 2 with no perennial understorey species present, except *Baumea juncea* in Transect 3. Transects 1 and 2 are generally protected from grazing, however, Transect 3 is accessed by cattle and is also burnt regularly by the landowner.

3.7.3 Population Structure and Tree Vigour

The size class distributions (Figure 3.7.1) indicate that there has been no significant change in the *E. rudis* population since 1997, which consists predominantly of stems under 20 cm in diameter with only two individuals greater than 30 cm. Since 1997 some stems have grown and are now part of the next size class. A small number of 'young' stems (<5 cm) are present along all transects with two additional seedlings being recorded in 2000. The low numbers of *E. rudis* seedlings and saplings that have established at Lake Towerrinning during the 3-year period between 1997 and 2000 indicate that recruitment of this wetland species is being hindered. Although only a small number of *M. rhaphiophylla* stems were originally sampled in 1997 a more even spread of sizes is apparent (Figure. 3.7.1) Only 3 of the 42 recorded *M. rhaphiophylla* seedlings were lost in the upper portion of Transects 1 and 2 since 1997. The vigour of both overstorey species, *E. rudis* and *M. rhaphiophylla*, has neither declined nor improved significantly since 1997, with the only noticeable change being a higher standard deviation of the Mean Crown Score in 2000 (Table 3.7.1). Individuals of *E. rudis* were generally in poor condition with a Mean Crown Score of 5.8. Seven of the tagged *E. rudis* trees have died since 1997. The more salt tolerant *M. rhaphiophylla* had a higher crown score, however, most individuals occurring at or below the water line were dead.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus rudis</td>
<td>58</td>
<td>52</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>5.7 (2.6)</td>
<td>5.8 (3.3)</td>
</tr>
<tr>
<td>Melaleuca rhaphiophylla</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>37</td>
<td>0</td>
<td>2</td>
<td>2.5 (3.4)</td>
<td>12.6 (4.3)</td>
</tr>
</tbody>
</table>

MCS = Mean crown score
Few changes in understorey composition and cover were recorded at Lake Towerrinning. Most notable is the significant reduction in cover experienced by *Lepidosperma longitudinale* in quadrats 2A, B and C of Transect 1.

Table 3.7.2: Brief Summary of Changes to the Understorey at Lake Towerrinning Transects

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Lost 1 sp, now no understorey.</td>
<td>No Change.</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>1B</td>
<td>Little Change.</td>
<td>No Change.</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>1C</td>
<td>Little Change.</td>
<td>No Change.</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>1D</td>
<td>Little Change.</td>
<td>(No Understorey)</td>
<td>Little Change.</td>
</tr>
<tr>
<td>1E</td>
<td>Little Change.</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>2A</td>
<td>Lepidosperma longitudinale - 1997 45%, 2000 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Lepidosperma longitudinale - 1997 55%, 2000 55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>Lepidosperma longitudinale - 1997 90%, 2000 60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>No Change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td>No Change.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7.4 Soil Characteristics

The EM38 data (Appendix 1) shows an increase in soil salinity with a decrease in elevation. The highest salinities are found along Transect 1, which is located at a low elevation on a very shallow gradient. Generally, salinity ranges have increased moderately since 1997 at each transect. For example, EC measurements at Transect 1 ranged from 41 and 254 mS/cm in 1997 and from 69 and 324 mS/cm during the 2000 monitoring period. Similar, but not as significant trends are apparent for Transect 2: 35-227 mS/cm (1997), 32-238 mS/cm (2000) and Transect 3: 32-128 mS/cm (1997), 32-192 mS/cm (2000). Soils are brown sands grading to coarse sands at the water line.

3.7.5 Summary

The decline in the vegetation of Lake Towerrinning due to clearing and the effects of salinity and increased waterlogging as described by Froend *et al.* (1991) appears to have continued up to the present time. The condition of the trees at the lake continues to be poor and suggests considerable stress due to salinity. *Baumea articulata* still occurs in only one small patch (approximately 2 x 2 m) at the inlet channel. The narrow band of remnant vegetation continues to be accessible to cattle and at least some of this is burnt regularly by the landowner. This, together with relatively high soil salinities, explains the general paucity and continued decline of understorey species. Some regeneration of *M. rhaphiophylla* is apparent at the western side of the lake where approximately 40 seedlings were located. This recruitment may be the result of conditions following unusually high water levels some three to four years ago. Although there was no significant change in the vigour of the *E. rudis* population since 1997, the absence of seedlings during both monitoring periods is of concern. The many disturbances to this lake including water skiing, camping, grazing and farming may cause further decline of the already susceptible and aging population of *E. rudis.*
Eucalyptus rudis

N.B. Due to differences in size class categorisation, only data between 5.1-10 and >70 is shown for 1997.

Melaleuca rhaphiophylla

N.B. Due to differences in size class categorisation, only data between 5.1-10 and >70 is shown for 1997.

Figure 3.7.1: Size Class Distributions of *Eucalyptus rudis* and *Melaleuca rhaphiophylla* for Lake Towerrinning.
Towerrinning - Transect 1

Acacia saligna
Baumea juncea
Dianella revoluta
Eucalyptus rudis
Lepidosperma longitudinale
Melaleuca rhaphiophylla

Legend: 1997 2000
D = Dead

Figure 3.7.2a: Species Distribution along Towerrinning Transect 1 in 1997 and 2000.

Towerrinning Transect 2

Baumea juncea
Eucalyptus rudis
Glischrocaryon flavescens
Lepidosperma longitudinale
Melaleuca rhaphiophylla

Legend: 1997 2000
D = Dead

Figure 3.7.2b: Species Distribution along Towerrinning Transect 2 in 1997 and 2000.

Towerrinning Transect 3

Baumea juncea
Eucalyptus rudis
Melaleuca rhaphiophylla

Legend: 1997 2000
D = Dead

Figure 3.7.2c: Species Distribution along Towerrinning Transect 3 in 1997 and 2000.
3.8 Wheatfield Lake

3.8.1 Description

Lake Wheatfield in the Lake Warden A class Nature Reserve (#32257, 33°48' S, 121°46' E) is the eastern most lake on the Coramup Creek watercourse of the Lake Warden System, immediately north of the town of Esperance. The lake is classified as subhaline to hyposaline and was probably to some extent saline prior to catchment clearing (ANCA, 1996). The lake receives inflow from Coramup Creek and in wetter years outflows through to the lakes further down in the chain. Lake Wheatfield is probably permanent, however, water levels were getting very low when the 1997/98 survey was conducted in late summer.

Transect 1: (GPS: 51°40'09.07 "I 62°58'57.53") lies on the northern side of the lake approximately 30 m west of the car park and extends from the terrestrial vegetation down to the lake edge.

Transect 2: (GPS: 51°40'10.02 / 62°58'55.23) is situated on the eastern side, approximately 50 m south east of the car park and is placed similarly to Transect 1.

Transect 3: (GPS: 51°40'04.29 / 62°58'12.6) was established in the Melaleuca cuticularis woodland on the southern side of the lake and is reached by walking approximately 500 m west along the track beginning at the cleared area on Fisheries Road.

Transect 4: (GPS: 51°40'14.48 / 62°58'63.1) lies approximately 200 m down the north outlet channel, on the south side of the channel (across the water).

3.8.2 Plant Communities

The northern, eastern and southern areas of the reserve around the main body of the lake consist of a woodland of Banksia speciosa with an understorey of a yet to be identified Myrtaceae species and Darwinia diosmoides. Towards the wetland basin a short, steep slope leads down to a Melaleuca cuticularis woodland in the littoral zone with scattered sedges such as Isolepis nodosa and Baumea juncea. The northern site near the inflow creek (Transect 1) was dominated by Melaleuca cuticularis and Spyridium globulosum with Sarcocornia quinqueflora at lower elevations. On the northern side and around the outflow channel dense stands of Melaleuca brevifolia occur on the steep slope directly up from the wetland basin. On the island created by the outflow channels, Eucalyptus incrassata and scattered E. occidentalis occur as an open woodland with an understorey of Leucopogon revolutus, Labichea lanceolata and Baumea juncea.

3.8.3 Population Structure and Tree Vigour

The increasing salinity of the lake water is reflected in the condition of the M. cuticularis trees in the littoral zone, which are showing some signs of stress, with a reduction in vigour since 1997 (Mean Crown Score of 12.2 in 1997 and 10.2 in 2000—Table 3.8.1). Upslope of this area, the vegetation appears relatively unaffected. Some disturbances are apparent around the lake such as tracks and roads, which have assisted weed invasion. Seedling numbers are very low at this wetland. Only one Eucalyptus incrassata seedling and one B. speciosa seedling was recorded in the study plots during 2000 monitoring and no M. cuticularis seedlings have been surveyed around the wetland basin during either monitoring occasion (Table 3.8.1, Figure 3.8.1). 55 M. brevifolia seedlings were located in Transect 4 in 1997, only 6 of which have since died.

| Table 3.8.1: Summary of Tree Data for Wheatfield Lake. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Melaleuca cuticularis | 123 | 122 | 0 | 0 | 0 | 0 | 12.2 (3.2) | 10.2 (3.39) |
| Spyridium globulosum | 38 | 41 | 4 | 0 | 0 | 4 | 12.9 (2.8) | 14.4 (2.64) |
| Eucalyptus incrassata | 67 | 61 | 1 | 0 | 0 | 0 | 8.3 (3.9) | 8.6 (3.82) |
| Acacia saligna | 8 | 7 | 4 | 0 | 0 | 4 | 11.4 (2.3) | 15.9 (4.4) |
| Melaleuca brevifolia | 118 | 116 | 55 | 49 | 0 | 0 | 13.1 (2.6) | 14.1 (2.86) |
| Banksia speciosa | 60 | 54 | 0 | 1 | 0 | 0 | 13.7 (3.4) | 18.2 (2.39) |
| Eucalyptus occidentalis | 2 | 2 | 0 | 0 | 0 | 0 | 9.5 (2.1) | 9.5 (3.53) |
| Nuytsia floribunda | 1 | 0 | 0 | 0 | 0 | 0 | 3 (0) | 0 |

MCS = Mean crown score
Changes in understorey composition and cover recorded at Lake Wheatfield, where insignificant for Transects 2 and 4. Transect 3 was completely flooded at the time of the monitoring visit and no understorey remained as a result. Changes along Transect 1 include the loss of the introduced American semi-aquatic grass species *Paspalum vaginatum* (Saltwater Couch – quadrats 2B, C and D) and the significant reduction in cover of *Gahnia trifida* (1B).

Table 3.8.2: Brief Summary of Changes to the Understorey at Lake Wheatfield Transects.

<table>
<thead>
<tr>
<th>Quadrat</th>
<th>Transect 1</th>
<th>Transect 2</th>
<th>Transect 3</th>
<th>Transect 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Lost 3 (incl. J kraussii), now no understorey.</td>
<td>Little Change.</td>
<td>Lost 3, now no understorey</td>
<td>No Change.</td>
</tr>
<tr>
<td>1B</td>
<td>Gahnia trifida – 1997 60%, 2000 7% Juncus kraussii – 1997 0.5%, 2000 15%</td>
<td>Little Change.</td>
<td>Lost 3, now no understorey</td>
<td>No Change.</td>
</tr>
<tr>
<td>1C</td>
<td>Little Change.</td>
<td>Little Change.</td>
<td>Lost 3, now no understorey</td>
<td>Little Change.</td>
</tr>
<tr>
<td>1D</td>
<td>Lost 2, gained 4 sp.</td>
<td>Little Change.</td>
<td>Lost 2, now no understorey</td>
<td>Little Change.</td>
</tr>
<tr>
<td>1E</td>
<td>Little Change.</td>
<td>Little Change.</td>
<td>Lost 2, now no understorey</td>
<td>Little Change.</td>
</tr>
<tr>
<td>2A</td>
<td>Little Change.</td>
<td>Little Change.</td>
<td>Lost 2, now no understorey</td>
<td>Little Change.</td>
</tr>
<tr>
<td>2C</td>
<td>Paspalum vaginatum (introduced) – 1997 30%, 2000 nil</td>
<td>Lost 4, now no understorey</td>
<td>(No Understorey)</td>
<td>Lost 3, now no understorey</td>
</tr>
<tr>
<td>2D</td>
<td>Lost 2 (incl. 1 introd.), now no understorey</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
<tr>
<td>2E</td>
<td>Lost 1, now no understorey</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
<td>(No Understorey)</td>
</tr>
</tbody>
</table>

3.8.4 Soil Characteristics

Soil salinities range between 180 – 400 mS/cm on Transects 1 and 4, whilst the more elevated Transect 2 experienced a range of 14 – 148 mS/cm. EM38 data were not recorded for Transect 3 due to inundation. Comparisons between 1997 and 2000 EM38 data cannot be undertaken due to a malfunction during 1997 monitoring, which resulted in a lack of useful data.

3.8.5 Summary

It is apparent that increasing salinity at Lake Wheatfield is causing stress in the *Melaleuca cuticularis* woodland of the littoral zone. Seedlings or young individuals of this species were not recorded in either the 1997 or 2000 monitoring survey. Their absence may adversely affect the sustainability of this community in the long-term if salinity and waterlogging continue to increase. In light of this the existing vegetation remains in relatively good condition with the surveyed population of *M. brevifolia* retaining vigour and all but 6 of the seedlings first recorded in 1997. Upland vegetation (*B. speciosa, A. saligna* and *Spyridium globulosum*) appears unaffected by the high salinity of the lake water, however, one area at the north of the lake contains significant numbers of dead *Banksia speciosa* individuals, which has been identified by Neil Gibson as a possible result of an outbreak of *Phytophthora*. The understorey diversity has significantly declined and weed invasion in the general vicinity has increased since 1997, which could be due to the ease of access to the lake for recreational activities (eg. fishing).
Figure 3.8.1: Size Class Distributions for *Melaleuca cuticularis*, *Banksia speciosa*, *Eucalyptus incrassata*, *Spyridium globulosum* and *Melaleuca brevifolia* at Lake Wheatfield.
Figure 3.8.1 (cont): Size Class Distributions for *Melaleuca cuticularis, Banksia speciosa, Eucalyptus incrassata?, Spyridium globulosum* and *Melaleuca brevifolia* at Lake Wheatfield.
Figure 3.8.1 (cont): Size Class Distributions for *Melaleuca cuticularis*, *Banksia spectosa*, *Eucalyptus incrassata*, *Spyridium globulosum* and *Melaleuca brevifolia* at Lake Wheatfield.
Figure 3.8.2a: Species Distribution along Wheatfield Transect 1 in 1997 and 2000.
Wheatfield - Transect 2

- *Acacia saligna*
- *Atriplex prostrata*
- *Banksia speciosa*
- *Baumea juncea(?)*
- *Chenopodium glaucum*
- *Darwinia diosmoides*
- *Isolepis nodosa*
- *Labichea lanceolata*
- *Melaleuca cuticularis*
- *Myrtaceae sp.*
- *Nuytsia floribunda*
- *Paspalum vaginatum*
- *Sarcocornia quinquedentata*
- *Scholtzia sp.*
- *Spyridium globulosum*
- *Spyridium sp.*

Legend:
- 1997
- 2000
- Seedlings
- D = Dead

Figure 3.8.2b: Species Distribution along Wheatfield Transect 2 in 1997 and 2000.

Wheatfield - Transect 3

- *Chenopodium glaucum*
- *Juncus krausi*
- *Melaleuca cuticularis*
- *Sarcocornia quinquedentata*
- *Suaeda australis*

Legend:
- 1997
- 2000
- Seedlings
- D = Dead

Note: Transect flooded

Figure 3.8.2c: Species Distribution along Wheatfield Transect 3 in 1997 and 2000.
Wheatfield - Transect 4

<table>
<thead>
<tr>
<th>Species</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia saligna</td>
<td></td>
</tr>
<tr>
<td>Acacia sp2</td>
<td></td>
</tr>
<tr>
<td>Baumea? juncea</td>
<td></td>
</tr>
<tr>
<td>Dampiera linearis</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus incrassata</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
</tr>
<tr>
<td>Isolepis nodosa</td>
<td></td>
</tr>
<tr>
<td>Juncus kraussii</td>
<td></td>
</tr>
<tr>
<td>Labichea lanceolata</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma sp.</td>
<td></td>
</tr>
<tr>
<td>Leucopogon revolutus</td>
<td></td>
</tr>
<tr>
<td>Melaleuca brevifolia</td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
</tr>
<tr>
<td>Sarcococmia quinqueflora</td>
<td></td>
</tr>
<tr>
<td>Spyridium sp.</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **D** = Dead
- **1997**
- **2000**
- **Seedlings**

Figure 3.8.2d: Species Distribution along Wheatfield Transect 4 in 1997 and 2000.
REFERENCES

APPENDICES

Appendix 1 EM38 Soil Conductivity Data (mS/cm) and Soil Field Assessments.

Appendix 2 Transect Overstorey Data

Appendix 3 Transect Understorey Data

Appendix 4 Understorey Species and Percentage Cover Comparisons, 1997 and 2000
APPENDIX 1

EM38 Soil Conductivity Data (mS/cm) and Soil Field Assessments.
EM38 Data (mS/cm)

BRYDE - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>98</td>
<td>65</td>
<td>93</td>
<td>63</td>
<td>96</td>
<td>68</td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>63</td>
<td>98</td>
<td>56</td>
<td>107</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>106</td>
<td>73</td>
<td>113</td>
<td>75</td>
<td>138</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>109</td>
<td>67</td>
<td>126</td>
<td>85</td>
<td>127</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>122</td>
<td>85</td>
<td>146</td>
<td>96</td>
<td>126</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>101</td>
<td>60</td>
<td>146</td>
<td>96</td>
<td>122</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>103</td>
<td>60</td>
<td>119</td>
<td>72</td>
<td>117</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>143</td>
<td>84</td>
<td>140</td>
<td>86</td>
<td>141</td>
<td>87</td>
<td>Grey sand/clay</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td>134</td>
<td>214</td>
<td>140</td>
<td>179</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>237</td>
<td>157</td>
<td>233</td>
<td>165</td>
<td>232</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>251</td>
<td>167</td>
<td>279</td>
<td>209</td>
<td>259</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>395</td>
<td>299</td>
<td>373</td>
<td>278</td>
<td>371</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>451</td>
<td>349</td>
<td>water</td>
<td>water</td>
<td>407</td>
<td>390</td>
<td>White sand overlying clay</td>
</tr>
<tr>
<td>52</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRYDE - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>82</td>
<td>60</td>
<td>83</td>
<td>50</td>
<td>92</td>
<td>65</td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>57</td>
<td>75</td>
<td>47</td>
<td>90</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>87</td>
<td>53</td>
<td>73</td>
<td>47</td>
<td>83</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>54</td>
<td>80</td>
<td>46</td>
<td>72</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>118</td>
<td>69</td>
<td>136</td>
<td>84</td>
<td>92</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>181</td>
<td>125</td>
<td>211</td>
<td>130</td>
<td>161</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>224</td>
<td>167</td>
<td>271</td>
<td>208</td>
<td>184</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>315</td>
<td>270</td>
<td>336</td>
<td>238</td>
<td>253</td>
<td>189</td>
<td>Brown/white sand</td>
</tr>
<tr>
<td>32</td>
<td>341</td>
<td>248</td>
<td>379</td>
<td>257</td>
<td>320</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>360</td>
<td>285</td>
<td>White sand</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BRYDE - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>189</td>
<td>116</td>
<td>210</td>
<td>134</td>
<td>231</td>
<td>164</td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>175</td>
<td>110</td>
<td>238</td>
<td>155</td>
<td>333</td>
<td>216</td>
<td>Brown sand</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>83</td>
<td>281</td>
<td>193</td>
<td>335</td>
<td>233</td>
<td>Brown sand</td>
</tr>
<tr>
<td>12</td>
<td>203</td>
<td>136</td>
<td>319</td>
<td>226</td>
<td>358</td>
<td>240</td>
<td>Brown sand</td>
</tr>
<tr>
<td>16</td>
<td>291</td>
<td>175</td>
<td>358</td>
<td>218</td>
<td>455</td>
<td>294</td>
<td>Brown sand</td>
</tr>
<tr>
<td>20</td>
<td>405</td>
<td>310</td>
<td>389</td>
<td>292</td>
<td>391</td>
<td>334</td>
<td>Brown sand</td>
</tr>
<tr>
<td>24</td>
<td>522</td>
<td>354</td>
<td>412</td>
<td>312</td>
<td>415</td>
<td>307</td>
<td>White sand</td>
</tr>
<tr>
<td>28</td>
<td>431</td>
<td>318</td>
<td>394</td>
<td>277</td>
<td>429</td>
<td>314</td>
<td>White sand</td>
</tr>
<tr>
<td>32</td>
<td>398</td>
<td>287</td>
<td>376</td>
<td>290</td>
<td>399</td>
<td>294</td>
<td>White sand</td>
</tr>
<tr>
<td>36</td>
<td>418</td>
<td>290</td>
<td>349</td>
<td>241</td>
<td>248</td>
<td>230</td>
<td>White sand</td>
</tr>
<tr>
<td>40</td>
<td>310</td>
<td>230</td>
<td>245</td>
<td>175</td>
<td>311</td>
<td>203</td>
<td>White sand</td>
</tr>
<tr>
<td>44</td>
<td>182</td>
<td>130</td>
<td>184</td>
<td>128</td>
<td>197</td>
<td>151</td>
<td>White sand</td>
</tr>
<tr>
<td>48</td>
<td>180</td>
<td>145</td>
<td>176</td>
<td>142</td>
<td>185</td>
<td>149</td>
<td>White sand</td>
</tr>
<tr>
<td>52</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
<tr>
<td>56</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
<tr>
<td>60</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
</tbody>
</table>

BRYDE - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>411</td>
<td>325</td>
<td>357</td>
<td>262</td>
<td>415</td>
<td>276</td>
<td>Brown loam</td>
</tr>
<tr>
<td>4</td>
<td>376</td>
<td>276</td>
<td>381</td>
<td>272</td>
<td>349</td>
<td>270</td>
<td>Brown loam</td>
</tr>
<tr>
<td>8</td>
<td>392</td>
<td>278</td>
<td>364</td>
<td>284</td>
<td>290</td>
<td>210</td>
<td>Brown loam</td>
</tr>
<tr>
<td>12</td>
<td>470</td>
<td>337</td>
<td>429</td>
<td>315</td>
<td>340</td>
<td>267</td>
<td>Brown loam</td>
</tr>
<tr>
<td>16</td>
<td>475</td>
<td>338</td>
<td>421</td>
<td>301</td>
<td>449</td>
<td>370</td>
<td>Brown loam</td>
</tr>
<tr>
<td>20</td>
<td>528</td>
<td>419</td>
<td>404</td>
<td>260</td>
<td>419</td>
<td>326</td>
<td>Brown loam</td>
</tr>
<tr>
<td>24</td>
<td>524</td>
<td>421</td>
<td>416</td>
<td>293</td>
<td>425</td>
<td>385</td>
<td>Brown loam</td>
</tr>
<tr>
<td>28</td>
<td>439</td>
<td>312</td>
<td>379</td>
<td>250</td>
<td>400</td>
<td>370</td>
<td>Brown loam</td>
</tr>
<tr>
<td>32</td>
<td>255</td>
<td>151</td>
<td>282</td>
<td>173</td>
<td>363</td>
<td>193</td>
<td>Brown loam</td>
</tr>
<tr>
<td>36</td>
<td>204</td>
<td>120</td>
<td>216</td>
<td>122</td>
<td>220</td>
<td>135</td>
<td>Brown loam</td>
</tr>
<tr>
<td>40</td>
<td>295</td>
<td>185</td>
<td>268</td>
<td>164</td>
<td>354</td>
<td>232</td>
<td>White sand</td>
</tr>
<tr>
<td>44</td>
<td>381</td>
<td>264</td>
<td>460</td>
<td>320</td>
<td>437</td>
<td>300</td>
<td>White sand</td>
</tr>
<tr>
<td>48</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
<tr>
<td>52</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
<tr>
<td>56</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
<tr>
<td>60</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>White sand</td>
</tr>
</tbody>
</table>
EM38 Data

Coomalbidgup - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>12.8</td>
<td>8.4</td>
<td>15.4</td>
<td>8.6</td>
</tr>
<tr>
<td>4</td>
<td>12.7</td>
<td>7.6</td>
<td>15.2</td>
<td>7.2</td>
</tr>
<tr>
<td>8</td>
<td>13.2</td>
<td>6.9</td>
<td>14.3</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>10.9</td>
<td>7</td>
<td>14.2</td>
<td>5.8</td>
</tr>
<tr>
<td>16</td>
<td>14.8</td>
<td>8.7</td>
<td>14</td>
<td>8.4</td>
</tr>
<tr>
<td>20</td>
<td>15.5</td>
<td>9.1</td>
<td>14.9</td>
<td>7.5</td>
</tr>
<tr>
<td>24</td>
<td>16.9</td>
<td>8.7</td>
<td>15.2</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>23.3</td>
<td>13.3</td>
<td>15.7</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>35.4</td>
<td>20.4</td>
<td>19.8</td>
<td>10.3</td>
</tr>
<tr>
<td>36</td>
<td>62.7</td>
<td>57.9</td>
<td>25.8</td>
<td>15.7</td>
</tr>
<tr>
<td>40</td>
<td>74.7</td>
<td>80.8</td>
<td>44.9</td>
<td>35.3</td>
</tr>
<tr>
<td>44</td>
<td>water</td>
<td>water</td>
<td>70.7</td>
<td>69.1</td>
</tr>
<tr>
<td>48</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
</tr>
<tr>
<td>52</td>
<td>Grey/white sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coomalbidgup - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>22.9</td>
<td>17.1</td>
<td>10.8</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>20.3</td>
<td>10.8</td>
<td>12.4</td>
<td>7.3</td>
</tr>
<tr>
<td>8</td>
<td>21.3</td>
<td>13.3</td>
<td>15.3</td>
<td>8.2</td>
</tr>
<tr>
<td>12</td>
<td>25.2</td>
<td>14.7</td>
<td>18.6</td>
<td>10.7</td>
</tr>
<tr>
<td>16</td>
<td>28.6</td>
<td>16.1</td>
<td>21.5</td>
<td>11.8</td>
</tr>
<tr>
<td>20</td>
<td>39.4</td>
<td>22.6</td>
<td>25.1</td>
<td>16.5</td>
</tr>
<tr>
<td>24</td>
<td>54.6</td>
<td>35.5</td>
<td>35.8</td>
<td>21.3</td>
</tr>
<tr>
<td>28</td>
<td>72.6</td>
<td>80.8</td>
<td>56.8</td>
<td>41.5</td>
</tr>
<tr>
<td>30</td>
<td>91.4</td>
<td>88.3</td>
<td>76.5</td>
<td>91.3</td>
</tr>
<tr>
<td>36</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
</tr>
<tr>
<td>40</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Grey sand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COOMALBIDGUP - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>10 Vertical</th>
<th>20 Vertical</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>143</td>
<td>123</td>
<td>112</td>
<td>Grey sand</td>
</tr>
<tr>
<td>4</td>
<td>136</td>
<td>104</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>113</td>
<td>99</td>
<td>88.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>94.4</td>
<td>85</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>79.8</td>
<td>77</td>
<td>83.8</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>71.3</td>
<td>77</td>
<td>83.4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>84.2</td>
<td>80</td>
<td>83.6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>118</td>
<td>101</td>
<td>91.7</td>
<td>Grey/white sand</td>
</tr>
<tr>
<td>30</td>
<td>159</td>
<td>129</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>171</td>
<td>145</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>water</td>
<td>water</td>
<td>150</td>
<td>Grey sand</td>
</tr>
<tr>
<td>44</td>
<td>water</td>
<td>water</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COOMALBIDGUP - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>10 Vertical</th>
<th>20 Vertical</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33</td>
<td>31.6</td>
<td>35.6</td>
<td>Grey sand</td>
</tr>
<tr>
<td>4</td>
<td>31.9</td>
<td>25.9</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>31.7</td>
<td>32</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>34.3</td>
<td>35</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>38.8</td>
<td>37.2</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td>41.8</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>51</td>
<td>51</td>
<td>51.3</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>56.9</td>
<td>66.5</td>
<td>62.4</td>
<td>Grey/white sand</td>
</tr>
<tr>
<td>30</td>
<td>74.9</td>
<td>92.8</td>
<td>84.7</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>92.5</td>
<td>117.4</td>
<td>112.6</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>115.3</td>
<td>118.8</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>120.8</td>
<td>water</td>
<td>water</td>
<td>Grey sand</td>
</tr>
<tr>
<td>48</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

COYRECUP - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>61</td>
<td>52</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>51</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>68</td>
<td>53</td>
<td>79</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>76</td>
<td>57</td>
<td>89</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>85</td>
<td>62</td>
<td>98</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>67</td>
<td>108</td>
<td>71</td>
</tr>
<tr>
<td>24</td>
<td>111</td>
<td>77</td>
<td>122</td>
<td>185</td>
</tr>
<tr>
<td>28</td>
<td>129</td>
<td>86</td>
<td>149</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>162</td>
<td>102</td>
<td>203</td>
<td>134</td>
</tr>
<tr>
<td>36</td>
<td>210</td>
<td>135</td>
<td>262</td>
<td>170</td>
</tr>
<tr>
<td>40</td>
<td>258</td>
<td>173</td>
<td>311</td>
<td>186</td>
</tr>
<tr>
<td>44</td>
<td>320</td>
<td>213</td>
<td>328</td>
<td>194</td>
</tr>
<tr>
<td>48</td>
<td>362</td>
<td>255</td>
<td>369</td>
<td>245</td>
</tr>
<tr>
<td>52</td>
<td>345</td>
<td>225</td>
<td>386</td>
<td>254</td>
</tr>
<tr>
<td>56</td>
<td>422</td>
<td>310</td>
<td>437</td>
<td>292</td>
</tr>
<tr>
<td>60</td>
<td>403</td>
<td>281</td>
<td>561</td>
<td>268</td>
</tr>
</tbody>
</table>

COYRECUP - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>13</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>16</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>21</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>25</td>
<td>47</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>35</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>35</td>
<td>73</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>42</td>
<td>84</td>
<td>44</td>
</tr>
<tr>
<td>28</td>
<td>101</td>
<td>56</td>
<td>99</td>
<td>55</td>
</tr>
<tr>
<td>30</td>
<td>145</td>
<td>79</td>
<td>123</td>
<td>70</td>
</tr>
<tr>
<td>36</td>
<td>411</td>
<td>275</td>
<td>414</td>
<td>270</td>
</tr>
<tr>
<td>40</td>
<td>520</td>
<td>375</td>
<td>565</td>
<td>387</td>
</tr>
<tr>
<td>44</td>
<td>536</td>
<td>358</td>
<td>608</td>
<td>440</td>
</tr>
<tr>
<td>48</td>
<td>585</td>
<td>412</td>
<td>573</td>
<td>419</td>
</tr>
<tr>
<td>52</td>
<td>686</td>
<td>500</td>
<td>602</td>
<td>450</td>
</tr>
<tr>
<td>56</td>
<td>610</td>
<td>447</td>
<td>626</td>
<td>459</td>
</tr>
<tr>
<td>60</td>
<td>614</td>
<td>414</td>
<td>604</td>
<td>408</td>
</tr>
</tbody>
</table>
COYRECUP - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
<td>31</td>
<td>55</td>
<td>29</td>
<td>53</td>
<td>26</td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>37</td>
<td>62</td>
<td>33</td>
<td>64</td>
<td>35</td>
<td>Brown sand</td>
</tr>
<tr>
<td>8</td>
<td>83</td>
<td>45</td>
<td>80</td>
<td>47</td>
<td>83</td>
<td>46</td>
<td>Brown sand</td>
</tr>
<tr>
<td>12</td>
<td>94</td>
<td>54</td>
<td>97</td>
<td>54</td>
<td>92</td>
<td>50</td>
<td>Brown sand</td>
</tr>
<tr>
<td>16</td>
<td>110</td>
<td>60</td>
<td>113</td>
<td>61</td>
<td>109</td>
<td>63</td>
<td>Brown sand</td>
</tr>
<tr>
<td>20</td>
<td>115</td>
<td>60</td>
<td>128</td>
<td>74</td>
<td>125</td>
<td>72</td>
<td>Brown sand</td>
</tr>
<tr>
<td>24</td>
<td>133</td>
<td>75</td>
<td>135</td>
<td>78</td>
<td>132</td>
<td>76</td>
<td>Brown sand</td>
</tr>
<tr>
<td>28</td>
<td>125</td>
<td>67</td>
<td>144</td>
<td>86</td>
<td>132</td>
<td>77</td>
<td>Brown sand</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>60</td>
<td>136</td>
<td>80</td>
<td>129</td>
<td>73</td>
<td>Brown sand</td>
</tr>
<tr>
<td>36</td>
<td>118</td>
<td>65</td>
<td>124</td>
<td>68</td>
<td>123</td>
<td>70</td>
<td>Brown sand</td>
</tr>
<tr>
<td>40</td>
<td>130</td>
<td>74</td>
<td>120</td>
<td>65</td>
<td>116</td>
<td>65</td>
<td>Brown sand</td>
</tr>
<tr>
<td>44</td>
<td>163</td>
<td>90</td>
<td>147</td>
<td>89</td>
<td>166</td>
<td>96</td>
<td>Brown sand</td>
</tr>
<tr>
<td>48</td>
<td>368</td>
<td>223</td>
<td>309</td>
<td>213</td>
<td>391</td>
<td>260</td>
<td>Brown/grey sand to sandy silt</td>
</tr>
<tr>
<td>52</td>
<td>479</td>
<td>340</td>
<td>459</td>
<td>307</td>
<td>542</td>
<td>418</td>
<td>Brown/grey sand to sandy silt</td>
</tr>
<tr>
<td>56</td>
<td>508</td>
<td>361</td>
<td>518</td>
<td>386</td>
<td>565</td>
<td>448</td>
<td>Brown/grey sand to sandy silt</td>
</tr>
<tr>
<td>60</td>
<td>552</td>
<td>416</td>
<td>572</td>
<td>458</td>
<td>573</td>
<td>445</td>
<td>Brown/grey sand to sandy silt</td>
</tr>
</tbody>
</table>

COYRECUP - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>663</td>
<td>482</td>
<td>598</td>
<td>493</td>
<td>588</td>
<td>512</td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>619</td>
<td>538</td>
<td>529</td>
<td>387</td>
<td>511</td>
<td>412</td>
<td>Brown sand</td>
</tr>
<tr>
<td>8</td>
<td>575</td>
<td>440</td>
<td>488</td>
<td>377</td>
<td>425</td>
<td>370</td>
<td>Brown sand</td>
</tr>
<tr>
<td>12</td>
<td>398</td>
<td>273</td>
<td>423</td>
<td>328</td>
<td>271</td>
<td>174</td>
<td>Brown sand</td>
</tr>
<tr>
<td>16</td>
<td>339</td>
<td>249</td>
<td>375</td>
<td>250</td>
<td>288</td>
<td>186</td>
<td>Brown sand</td>
</tr>
<tr>
<td>20</td>
<td>315</td>
<td>220</td>
<td>281</td>
<td>175</td>
<td>288</td>
<td>195</td>
<td>Brown sand</td>
</tr>
<tr>
<td>24</td>
<td>327</td>
<td>217</td>
<td>260</td>
<td>158</td>
<td>261</td>
<td>170</td>
<td>Brown sand</td>
</tr>
<tr>
<td>28</td>
<td>298</td>
<td>182</td>
<td>253</td>
<td>183</td>
<td>310</td>
<td>206</td>
<td>Brown sand</td>
</tr>
<tr>
<td>30</td>
<td>344</td>
<td>255</td>
<td>313</td>
<td>215</td>
<td>412</td>
<td>289</td>
<td>Brown sand</td>
</tr>
<tr>
<td>36</td>
<td>415</td>
<td>343</td>
<td>348</td>
<td>247</td>
<td>443</td>
<td>344</td>
<td>Brown sand</td>
</tr>
<tr>
<td>40</td>
<td>540</td>
<td>405</td>
<td>502</td>
<td>461</td>
<td>564</td>
<td>465</td>
<td>Brown sand</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>Distance (m)</td>
<td>0 Vertical</td>
<td>Horizontal</td>
<td>10 Vertical</td>
<td>Horizontal</td>
<td>20 Vertical</td>
<td>Horizontal</td>
<td>Field Texture</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>0</td>
<td>470</td>
<td>321</td>
<td>533</td>
<td>378</td>
<td>540</td>
<td>395</td>
<td>Dark sand</td>
</tr>
<tr>
<td>4</td>
<td>509</td>
<td>314</td>
<td>484</td>
<td>380</td>
<td>594</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>558</td>
<td>452</td>
<td>608</td>
<td>437</td>
<td>542</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>501</td>
<td>354</td>
<td>582</td>
<td>483</td>
<td>579</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>460</td>
<td>302</td>
<td>487</td>
<td>339</td>
<td>530</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>396</td>
<td>307</td>
<td>455</td>
<td>291</td>
<td>498</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>484</td>
<td>307</td>
<td>514</td>
<td>399</td>
<td>529</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>519</td>
<td>407</td>
<td>488</td>
<td>299</td>
<td>512</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>486</td>
<td>320</td>
<td>528</td>
<td>399</td>
<td>552</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>458</td>
<td>366</td>
<td>557</td>
<td>445</td>
<td>517</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>461</td>
<td>345</td>
<td>548</td>
<td>436</td>
<td>516</td>
<td>436</td>
<td>Brown sandy clay</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

KULIKUP - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>25</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>45</td>
<td>64</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>93</td>
<td>47</td>
<td>81</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>89</td>
<td>47</td>
<td>88</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>94</td>
<td>50</td>
<td>112</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>104</td>
<td>72</td>
<td>131</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>104</td>
<td>72</td>
<td>137</td>
<td>92</td>
</tr>
<tr>
<td>28</td>
<td>111</td>
<td>92</td>
<td>130</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>water</td>
<td>water</td>
<td>116</td>
<td>91</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KULIKUP - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>105</td>
<td>37</td>
<td>120</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>108</td>
<td>60</td>
<td>119</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>116</td>
<td>70</td>
<td>122</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>114</td>
<td>66</td>
<td>112</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>126</td>
<td>74</td>
<td>97</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>143</td>
<td>87</td>
<td>101</td>
<td>60</td>
</tr>
<tr>
<td>24</td>
<td>134</td>
<td>75</td>
<td>116</td>
<td>64</td>
</tr>
<tr>
<td>28</td>
<td>162</td>
<td>99</td>
<td>152</td>
<td>93</td>
</tr>
<tr>
<td>30</td>
<td>157</td>
<td>99</td>
<td>158</td>
<td>101</td>
</tr>
<tr>
<td>36</td>
<td>156</td>
<td>108</td>
<td>122</td>
<td>77</td>
</tr>
<tr>
<td>40</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KULIKUP - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Across (m)</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>53</td>
<td>30</td>
<td>74</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>48</td>
<td>98</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
<td>67</td>
<td>134</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>154</td>
<td>82</td>
<td>160</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>215</td>
<td>125</td>
<td>144</td>
<td>81</td>
</tr>
<tr>
<td>20</td>
<td>157</td>
<td>93</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>151</td>
<td>88</td>
<td>109</td>
<td>64</td>
</tr>
<tr>
<td>28</td>
<td>148</td>
<td>92</td>
<td>129</td>
<td>78</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>109</td>
<td>192</td>
<td>134</td>
</tr>
<tr>
<td>36</td>
<td>185</td>
<td>141</td>
<td>190</td>
<td>138</td>
</tr>
<tr>
<td>40</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KULIKUP - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance Across (m)</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>164</td>
<td>109</td>
<td>114</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>148</td>
<td>101</td>
<td>106</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>127</td>
<td>99</td>
<td>100</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>118</td>
<td>91</td>
<td>99</td>
<td>69</td>
</tr>
<tr>
<td>16</td>
<td>104</td>
<td>87</td>
<td>91</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>85</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

NOOBLJUP - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>10 Vertical</th>
<th>20 Vertical</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>411</td>
<td>383</td>
<td>225</td>
<td>Dark Sandy/Clay</td>
</tr>
<tr>
<td>4</td>
<td>430</td>
<td>387</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>412</td>
<td>337</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>389</td>
<td>352</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>381</td>
<td>384</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>366</td>
<td>313</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>366</td>
<td>329</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>387</td>
<td>328</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>393</td>
<td>309</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>343</td>
<td>339</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>365</td>
<td>456</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOOBLJUP - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>10 Vertical</th>
<th>20 Vertical</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>112</td>
<td>122</td>
<td>Laterite</td>
</tr>
<tr>
<td>4</td>
<td>109</td>
<td>115</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>112</td>
<td>128</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>122</td>
<td>127</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>136</td>
<td>132</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>139</td>
<td>151</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>124</td>
<td>125</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>114</td>
<td>106</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>107</td>
<td>110</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>107</td>
<td>113</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>123</td>
<td>117</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laterite/organic sand
NOOBIJUP - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th></th>
<th>10</th>
<th></th>
<th>20</th>
<th></th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>76</td>
<td>59</td>
<td>73</td>
<td>58</td>
<td>70</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>61</td>
<td>72</td>
<td>57</td>
<td>68</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>77</td>
<td>59</td>
<td>70</td>
<td>56</td>
<td>67</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>62</td>
<td>70</td>
<td>55</td>
<td>68</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>62</td>
<td>72</td>
<td>58</td>
<td>74</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>63</td>
<td>80</td>
<td>60</td>
<td>83</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>95</td>
<td>66</td>
<td>96</td>
<td>73</td>
<td>100</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>109</td>
<td>76</td>
<td>144</td>
<td>101</td>
<td>122</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>143</td>
<td>96</td>
<td>160</td>
<td>123</td>
<td>141</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>192</td>
<td>145</td>
<td>186</td>
<td>137</td>
<td>184</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>244</td>
<td>208</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOOBIJUP - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th></th>
<th>10</th>
<th></th>
<th>20</th>
<th></th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>80.4</td>
<td>61</td>
<td>74.5</td>
<td>61.1</td>
<td>52.4</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>59</td>
<td>72</td>
<td>64.8</td>
<td>56.1</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85.1</td>
<td>53.4</td>
<td>65.6</td>
<td>59.2</td>
<td>60.7</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>87.7</td>
<td>54.8</td>
<td>85.4</td>
<td>66.7</td>
<td>49.9</td>
<td>65.7</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>90.8</td>
<td>67.6</td>
<td>81.5</td>
<td>61.4</td>
<td>62.1</td>
<td>55.7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>103</td>
<td>75</td>
<td>96.2</td>
<td>70</td>
<td>87.6</td>
<td>67.1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>128</td>
<td>91</td>
<td>111</td>
<td>79</td>
<td>104</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>130</td>
<td>118</td>
<td>122</td>
<td>89</td>
<td>120</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>185</td>
<td>150</td>
<td>158</td>
<td>120</td>
<td>144</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>182</td>
<td>145</td>
<td>190</td>
<td>166</td>
<td>138</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>water</td>
<td>water</td>
<td>175</td>
<td>122</td>
<td>133</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance (m)</td>
<td>Distance Across (m)</td>
<td>Field Texture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>77 Vertical 15 Horizontal</td>
<td>Brown sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>54 Vertical 45 Horizontal</td>
<td>Brown sand grading to peat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>57 Vertical 47 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>58 Vertical 47 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>60 Vertical 49 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>66 Vertical 53 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>73 Vertical 67 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>79 Vertical 50 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>91 Vertical 67 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>129 Vertical 93 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>207 Vertical 186 Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>water Vertical water Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>water Vertical water Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>water Vertical water Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>water Vertical water Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>water Vertical water Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

TOOLIBIN - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>279</td>
<td>130</td>
<td>234</td>
<td>156</td>
</tr>
<tr>
<td>4</td>
<td>258</td>
<td>180</td>
<td>243</td>
<td>154</td>
</tr>
<tr>
<td>8</td>
<td>270</td>
<td>167</td>
<td>257</td>
<td>173</td>
</tr>
<tr>
<td>12</td>
<td>188</td>
<td>132</td>
<td>241</td>
<td>169</td>
</tr>
<tr>
<td>16</td>
<td>169</td>
<td>108</td>
<td>211</td>
<td>132</td>
</tr>
<tr>
<td>20</td>
<td>169</td>
<td>111</td>
<td>151</td>
<td>106</td>
</tr>
<tr>
<td>24</td>
<td>174</td>
<td>110</td>
<td>151</td>
<td>98</td>
</tr>
<tr>
<td>28</td>
<td>170</td>
<td>115</td>
<td>157</td>
<td>98</td>
</tr>
<tr>
<td>30</td>
<td>169</td>
<td>121</td>
<td>162</td>
<td>104</td>
</tr>
<tr>
<td>36</td>
<td>206</td>
<td>141</td>
<td>156</td>
<td>98</td>
</tr>
<tr>
<td>40</td>
<td>259</td>
<td>152</td>
<td>206</td>
<td>131</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOOLIBIN - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0</td>
<td>617</td>
<td>514</td>
<td>605</td>
<td>447</td>
</tr>
<tr>
<td>4</td>
<td>619</td>
<td>477</td>
<td>584</td>
<td>452</td>
</tr>
<tr>
<td>8</td>
<td>624</td>
<td>472</td>
<td>578</td>
<td>416</td>
</tr>
<tr>
<td>12</td>
<td>704</td>
<td>528</td>
<td>554</td>
<td>401</td>
</tr>
<tr>
<td>16</td>
<td>615</td>
<td>505</td>
<td>656</td>
<td>511</td>
</tr>
<tr>
<td>20</td>
<td>559</td>
<td>456</td>
<td>640</td>
<td>514</td>
</tr>
<tr>
<td>24</td>
<td>595</td>
<td>471</td>
<td>552</td>
<td>367</td>
</tr>
<tr>
<td>28</td>
<td>626</td>
<td>478</td>
<td>576</td>
<td>495</td>
</tr>
<tr>
<td>30</td>
<td>565</td>
<td>412</td>
<td>615</td>
<td>488</td>
</tr>
<tr>
<td>36</td>
<td>577</td>
<td>404</td>
<td>723</td>
<td>567</td>
</tr>
<tr>
<td>40</td>
<td>584</td>
<td>476</td>
<td>663</td>
<td>449</td>
</tr>
<tr>
<td>44</td>
<td>628</td>
<td>567</td>
<td>598</td>
<td>458</td>
</tr>
<tr>
<td>48</td>
<td>655</td>
<td>568</td>
<td>537</td>
<td>410</td>
</tr>
<tr>
<td>52</td>
<td>645</td>
<td>593</td>
<td>518</td>
<td>356</td>
</tr>
<tr>
<td>56</td>
<td>610</td>
<td>488</td>
<td>612</td>
<td>440</td>
</tr>
<tr>
<td>60</td>
<td>483</td>
<td>362</td>
<td>572</td>
<td>429</td>
</tr>
</tbody>
</table>
TOOLIBIN - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
<td>26</td>
<td>38</td>
<td>21</td>
<td>35</td>
<td>18</td>
<td>Yellow/brown sand</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>30</td>
<td>50</td>
<td>24</td>
<td>42</td>
<td>21</td>
<td>Dark sandy loam</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>38</td>
<td>62</td>
<td>33</td>
<td>54</td>
<td>27</td>
<td>Grey silt/clay</td>
</tr>
<tr>
<td>12</td>
<td>91</td>
<td>49</td>
<td>85</td>
<td>47</td>
<td>68</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>68</td>
<td>121</td>
<td>68</td>
<td>94</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>189</td>
<td>117</td>
<td>180</td>
<td>107</td>
<td>160</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>291</td>
<td>193</td>
<td>282</td>
<td>187</td>
<td>231</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>383</td>
<td>251</td>
<td>418</td>
<td>290</td>
<td>358</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>444</td>
<td>309</td>
<td>444</td>
<td>320</td>
<td>392</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>487</td>
<td>327</td>
<td>503</td>
<td>380</td>
<td>434</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>552</td>
<td>406</td>
<td>523</td>
<td>387</td>
<td>462</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>643</td>
<td>492</td>
<td>611</td>
<td>491</td>
<td>565</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>668</td>
<td>530</td>
<td>702</td>
<td>576</td>
<td>647</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>745</td>
<td>564</td>
<td>823</td>
<td>689</td>
<td>738</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>742</td>
<td>381</td>
<td>807</td>
<td>654</td>
<td>733</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>738</td>
<td>620</td>
<td>736</td>
<td>600</td>
<td>622</td>
<td>477</td>
<td></td>
</tr>
</tbody>
</table>

TOOLIBIN - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>675</td>
<td>661</td>
<td>547</td>
<td>464</td>
<td>616</td>
<td>491</td>
<td>Dark loam on mounds</td>
</tr>
<tr>
<td>4</td>
<td>726</td>
<td>707</td>
<td>636</td>
<td>597</td>
<td>660</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>643</td>
<td>652</td>
<td>609</td>
<td>483</td>
<td>674</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>632</td>
<td>578</td>
<td>674</td>
<td>661</td>
<td>730</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>769</td>
<td>744</td>
<td>625</td>
<td>592</td>
<td>810</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>707</td>
<td>610</td>
<td>679</td>
<td>660</td>
<td>800</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>694</td>
<td>624</td>
<td>733</td>
<td>591</td>
<td>726</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>763</td>
<td>621</td>
<td>682</td>
<td>615</td>
<td>654</td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>663</td>
<td>620</td>
<td>679</td>
<td>588</td>
<td>742</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>701</td>
<td>623</td>
<td>755</td>
<td>637</td>
<td>701</td>
<td>641</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>666</td>
<td>579</td>
<td>677</td>
<td>596</td>
<td>753</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

TOWERRINNING - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th></th>
<th></th>
<th>10</th>
<th></th>
<th></th>
<th>20</th>
<th></th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>324</td>
<td>273</td>
<td>196</td>
<td>131</td>
<td>270</td>
<td>193</td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>212</td>
<td>160</td>
<td>186</td>
<td>128</td>
<td>191</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>177</td>
<td>126</td>
<td>177</td>
<td>122</td>
<td>188</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>168</td>
<td>113</td>
<td>180</td>
<td>135</td>
<td>186</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>155</td>
<td>95</td>
<td>147</td>
<td>96</td>
<td>172</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>131</td>
<td>81</td>
<td>139</td>
<td>85</td>
<td>149</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>133</td>
<td>82</td>
<td>150</td>
<td>91</td>
<td>155</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>97</td>
<td>159</td>
<td>100</td>
<td>125</td>
<td>75</td>
<td></td>
<td></td>
<td>Coarse brown sand</td>
</tr>
<tr>
<td>30</td>
<td>218</td>
<td>161</td>
<td>231</td>
<td>164</td>
<td>118</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>248</td>
<td>232</td>
<td>water</td>
<td>water</td>
<td>137</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>240</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOWERRINNING - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th></th>
<th></th>
<th>10</th>
<th></th>
<th></th>
<th>20</th>
<th></th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>45</td>
<td>32</td>
<td>57</td>
<td>37</td>
<td>63</td>
<td>39</td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>43</td>
<td>65</td>
<td>43</td>
<td>72</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85</td>
<td>72</td>
<td>91</td>
<td>69</td>
<td>98</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>137</td>
<td>119</td>
<td>118</td>
<td>96</td>
<td>145</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>182</td>
<td>186</td>
<td>192</td>
<td>196</td>
<td>238</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>150</td>
<td>231</td>
<td>164</td>
<td>118</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>32</td>
<td>159</td>
<td>159</td>
<td>100</td>
<td>125</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>231</td>
<td>231</td>
<td>164</td>
<td>118</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>40</td>
<td>248</td>
<td>248</td>
<td>232</td>
<td>137</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>44</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>240</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>48</td>
<td>248</td>
<td>248</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>56</td>
<td>248</td>
<td>248</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>60</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>60</th>
<th></th>
<th></th>
<th>60</th>
<th></th>
<th></th>
<th>60</th>
<th></th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>45</td>
<td>32</td>
<td>57</td>
<td>37</td>
<td>63</td>
<td>39</td>
<td></td>
<td></td>
<td>Brown sand</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>43</td>
<td>65</td>
<td>43</td>
<td>72</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>85</td>
<td>72</td>
<td>91</td>
<td>69</td>
<td>98</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>137</td>
<td>119</td>
<td>118</td>
<td>96</td>
<td>145</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>182</td>
<td>186</td>
<td>192</td>
<td>196</td>
<td>238</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance (m)</td>
<td>0 Vertical</td>
<td>0 Horizontal</td>
<td>10 Vertical</td>
<td>10 Horizontal</td>
<td>20 Vertical</td>
<td>20 Horizontal</td>
<td>Field Texture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>63</td>
<td>43</td>
<td>58</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>44</td>
<td>58</td>
<td>44</td>
<td>43</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>66</td>
<td>46</td>
<td>63</td>
<td>43</td>
<td>57</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>68</td>
<td>45</td>
<td>79</td>
<td>59</td>
<td>70</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>72</td>
<td>52</td>
<td>110</td>
<td>90</td>
<td>81</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>122</td>
<td>94</td>
<td>143</td>
<td>192</td>
<td>124</td>
<td>129</td>
<td>Brown sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM38 Data

WHEATFIELD - Transect 1

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>water</td>
<td>water</td>
<td>324</td>
<td>297</td>
<td>238</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>water</td>
<td>water</td>
<td>239</td>
<td>230</td>
<td>180</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>274</td>
<td>235</td>
<td>185</td>
<td>146</td>
<td>161</td>
<td>119</td>
<td>White sand</td>
</tr>
<tr>
<td>12</td>
<td>188</td>
<td>148</td>
<td>168</td>
<td>136</td>
<td>137</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>185</td>
<td>142</td>
<td>121</td>
<td>76</td>
<td>126</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>236</td>
<td>223</td>
<td>158</td>
<td>112</td>
<td>141</td>
<td>93</td>
<td>Black/grey</td>
</tr>
<tr>
<td>24</td>
<td>257</td>
<td>244</td>
<td>206</td>
<td>217</td>
<td>180</td>
<td>148</td>
<td>Sand</td>
</tr>
<tr>
<td>28</td>
<td>242</td>
<td>225</td>
<td>223</td>
<td>198</td>
<td>204</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WHEATFIELD - Transect 2

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39</td>
<td>20</td>
<td>38</td>
<td>19</td>
<td>42</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>19</td>
<td>33</td>
<td>17</td>
<td>25</td>
<td>15</td>
<td>Grey Sand</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>17</td>
<td>25</td>
<td>14</td>
<td>26</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>17</td>
<td>23</td>
<td>14</td>
<td>26</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>25</td>
<td>37</td>
<td>19</td>
<td>40</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>79</td>
<td>40</td>
<td>60</td>
<td>35</td>
<td>128</td>
<td>49</td>
<td>White Sand</td>
</tr>
<tr>
<td>24</td>
<td>157</td>
<td>107</td>
<td>115</td>
<td>74</td>
<td>196</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHEATFIELD - Transect 3

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey Silty Clay</td>
</tr>
</tbody>
</table>

WHEATFIELD - Transect 4

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0 Vertical</th>
<th>0 Horizontal</th>
<th>10 Vertical</th>
<th>10 Horizontal</th>
<th>20 Vertical</th>
<th>20 Horizontal</th>
<th>Field Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>486</td>
<td>449</td>
<td>455</td>
<td>394</td>
<td>342</td>
<td>278</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>4</td>
<td>358</td>
<td>274</td>
<td>338</td>
<td>254</td>
<td>304</td>
<td>217</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>8</td>
<td>265</td>
<td>183</td>
<td>252</td>
<td>164</td>
<td>303</td>
<td>214</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>12</td>
<td>260</td>
<td>169</td>
<td>248</td>
<td>156</td>
<td>287</td>
<td>201</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>16</td>
<td>267</td>
<td>165</td>
<td>262</td>
<td>174</td>
<td>286</td>
<td>198</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>20</td>
<td>296</td>
<td>218</td>
<td>281</td>
<td>173</td>
<td>306</td>
<td>257</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>24</td>
<td>378</td>
<td>329</td>
<td>275</td>
<td>211</td>
<td>286</td>
<td>259</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>28</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>water</td>
<td>313</td>
<td>386</td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White Sand with Sandstone outcrops</td>
</tr>
</tbody>
</table>
APPENDIX 2

Transect Overstorey Data
<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1568</td>
<td>6.85</td>
<td>1.5 - 2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1569</td>
<td>7</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1570</td>
<td>8.45</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1571</td>
<td>8.35</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1572</td>
<td>7.65</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Melaleuca uncinata</td>
<td>x18</td>
<td>multiple <2</td>
<td>0.5 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca interflora interflora</td>
<td>x1</td>
<td><2</td>
<td>1.75</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca ascuminata</td>
<td>x1</td>
<td></td>
<td>2.3</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lanceolata</td>
<td>x1</td>
<td>1.75</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lophophylla</td>
<td>x1</td>
<td>2.2</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>1B</td>
<td>Eucalyptus flocktoniae</td>
<td>1573</td>
<td>15.75</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1574</td>
<td>9.05</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1575</td>
<td>10.4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1576</td>
<td>23.65</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1577</td>
<td><2, <2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1578</td>
<td><2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1579</td>
<td>12.75</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1580</td>
<td>9.85</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1581</td>
<td>12.3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1582</td>
<td>15.8</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1583</td>
<td>12.65</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1584</td>
<td>8.35</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>x3</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca uncinata</td>
<td>x11</td>
<td>multiple <2</td>
<td>0.4 - 1.7</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca adnata</td>
<td>x3</td>
<td></td>
<td>2.3</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca ascinunata</td>
<td>x3</td>
<td>2.5</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Templetonia sulcata</td>
<td>x11</td>
<td>1.7</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>1C</td>
<td>Eucalyptus flocktoniae</td>
<td>1585</td>
<td>12.5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1586</td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1587</td>
<td>7.8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1588</td>
<td>10.55</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1589</td>
<td>9.9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Melaleuca uncinata</td>
<td>x1</td>
<td>multiple <2</td>
<td>1.7</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Dodonaea streyoga</td>
<td>x2</td>
<td></td>
<td>1.5 - 1.85</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca adnata</td>
<td>x13</td>
<td>1.5 - 2</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lanceolata</td>
<td>x10</td>
<td>1.8 - 2.75</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>1D</td>
<td>Eucalyptus flocktoniae</td>
<td>1590</td>
<td>7.05</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1591</td>
<td>12.4</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1592</td>
<td>10.3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1593</td>
<td>8.9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1594</td>
<td>9.85</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1595</td>
<td>8.1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>x2</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dodonaea streyoga</td>
<td>x3</td>
<td></td>
<td>1.5 - 1.8</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>x2</td>
<td>1.7 - 2.2</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca uncinata</td>
<td>x1</td>
<td>multiple <2</td>
<td>1.2</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca adnata</td>
<td>x3</td>
<td>1.7 - 2</td>
<td></td>
<td>Stressed</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lanceolata</td>
<td>x11</td>
<td>1.5 - 3</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1596</td>
<td>13.65</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1597</td>
<td>11</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>x2</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dodonaea stenogyga</td>
<td>x1</td>
<td>1.8</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>x2</td>
<td>1.8 - 2.2</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca adnata</td>
<td>x1</td>
<td>1.8</td>
<td>Stressed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca lanceolata</td>
<td>x25</td>
<td>1.7 - 3.2</td>
<td>Healthy</td>
<td></td>
</tr>
</tbody>
</table>

2A	Eucalyptus flocktoniae	1598	13.9, 10.75		17
	Eucalyptus flocktoniae	1599	21.85		15
	Eucalyptus flocktoniae	1600	13.5		15
	Eucalyptus flocktoniae	1601	11.1		13
	Melaleuca lanceolata	x37	0.6 - 3	Healthy	

2B	Eucalyptus flocktoniae	1602	12.05		17
	Eucalyptus flocktoniae	1603	18.4		14
	Eucalyptus flocktoniae	1604	14.1		10
	Eucalyptus flocktoniae	1605	23.5		10
	Eucalyptus flocktoniae	1606	20.3		12
	Melaleuca lateriflora lateriflora	x1	<2	Healthy	
	Melaleuca lanceolata	x79	0.5 - 2.5	Healthy	
	Melaleuca lanceolata	x5	dead		

2C	Melaleuca adnata	x2	1.7 - 2.2	Healthy	
	Melaleuca lanceolata	x422	0.5 - 3.5	Healthy	
	Melaleuca lanceolata	x21	dead		
	Melaleuca thyoides	x2	2.5 - 3	Healthy	

2D	Melaleuca thyoides	x3	2.5 - 3	Healthy	
	Melaleuca adnata	x4	1.6 - 2.2	Healthy	
	Melaleuca acuminata	x2	1.8	Healthy	
	Melaleuca lanceolata	x324	0.5 - 3.2	Healthy	
	Melaleuca lanceolata	x49	dead		

2E	Eucalyptus flocktoniae	1607	16.15		19
	Melaleuca thyoides	x11	1.5 - 3.2	Healthy	
	Melaleuca lateriflora lateriflora	x2	<2	Healthy	
	Melaleuca lanceolata	x159	0.5 - 3.2	Healthy	
	Melaleuca lanceolata	x18	dead		

3A	Eucalyptus flocktoniae	1608	17.6		13
	Eucalyptus flocktoniae	1609	14.3		13
	Eucalyptus flocktoniae	x16	dead		
	Melaleuca lateriflora lateriflora	x16	<2	Healthy	
	Melaleuca thyoides	x20	0.8 - 4	Healthy	
	Melaleuca thyoides	x3	1.5 - 3	Healthy	
	Melaleuca lanceolata	x38	1.5 - 3.5	Healthy	
	Eucalyptus occidentalis	x41	<2 - seedling	Stressed	
	Melaleuca strobophyllis	x2	<2 - seedling	Healthy	

<p>| 3B | Eucalyptus occidentalis | 1610 | 20.45, 10.7 | | 15 |
| | Eucalyptus occidentalis | 1611 | 12.1 | | 3 |
| | Eucalyptus occidentalis | 1612 | 29.7 | | 19 |
| | Melaleuca strobophyllis | 1613 | 4 | | 15 |
| | Melaleuca strobophyllis | 1614 | 4.1 | | 11 |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Measure</th>
<th>1.2 - 3</th>
<th>1.5 - 3</th>
<th>Healthy</th>
<th>2 - 2.5</th>
<th>Healthy</th>
<th>3 - 4.2</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.15</td>
<td>4.85</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.16</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.17</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>x25</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>x3</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca hyoides</td>
<td>x5</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca hybrids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1.18</td>
<td>17.1</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1.19</td>
<td>31.25</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1.20</td>
<td>21.5</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1.21</td>
<td>21.18</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.22</td>
<td>3.6</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.23</td>
<td>5.6</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.24</td>
<td>2.5</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.25</td>
<td>2.5</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.26</td>
<td>4.6</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.27</td>
<td>2.7</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.28</td>
<td>3.5, 4.9, 3.9, 3.4, 2.8</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.29</td>
<td>4.7</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.30</td>
<td>2.2, 2.4, 6.7, 3.3, 5.5</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.31</td>
<td>6.8, 2.8</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.32</td>
<td>5</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.33</td>
<td>3.1</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.34</td>
<td>3.4</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.35</td>
<td>2.8</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.36</td>
<td>4.5</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.37</td>
<td>3.5</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.38</td>
<td>3.4</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.39</td>
<td>2.8</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.40</td>
<td>5.8, 6.2</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.41</td>
<td>3.6, 2.3, 2.3, <2 x 6</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.42</td>
<td>3</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.43</td>
<td>4.3</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.44</td>
<td>4.1</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.45</td>
<td>3</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.46</td>
<td>7.3, 3</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.47</td>
<td>3.7</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.48</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.49</td>
<td>5</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.50</td>
<td>4.2, <2, <2</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.51</td>
<td>3.2</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.52</td>
<td>3.3</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.53</td>
<td>2.9</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.54</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.55</td>
<td>2.9</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.56</td>
<td>4.9</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.57</td>
<td>3.3</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.58</td>
<td>6.5</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.59</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.60</td>
<td>5.65</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.61</td>
<td><2 x 5, dead</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.62</td>
<td>4.3, 3</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.63</td>
<td>4</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.64</td>
<td>3.3, 2.5, <2, <2, <2</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.65</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca alternifolia</td>
<td>1.66</td>
<td>3 - 4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Melaleuca strobophylla</td>
<td>1665</td>
<td>4.2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1666</td>
<td>6, 3.4, 4.4, <2, 4.2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1667</td>
<td>5, 4.2</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1668</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1669</td>
<td>11.1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1670</td>
<td>6.4</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1671</td>
<td>13</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1672</td>
<td>3.3, 4, 2.8, 2.5, 5.45</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1673</td>
<td>5.7</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1674</td>
<td>3, 3.4, 2.7, 3.2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Melaleuca strobophylla</td>
<td>1675</td>
<td>3.5, 3, 3.7</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRYDE - Transect 2

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1676</td>
<td>13.6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1677</td>
<td>14.45</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1678</td>
<td>14.15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1679</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1680</td>
<td>10.05</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1681</td>
<td>11.65</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1682</td>
<td>10.8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1683</td>
<td>8.9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1684</td>
<td>8.2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Eucalyptus flocktoniae</td>
<td>1685</td>
<td>x2</td>
<td>0.5 - 2.5</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Melaleuca lanceolata</td>
<td>x270</td>
<td>dead</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Melaleuca lanceolata</td>
<td>x18</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1B	Eucalyptus flocktoniae	1686	8.45	9
1B	Eucalyptus flocktoniae	1687	13.75	16
1B	Eucalyptus flocktoniae	1688	9.4	10
1B	Eucalyptus flocktoniae	1689	12	9
1B	Eucalyptus flocktoniae	1690	7.7	3
1B	Eucalyptus flocktoniae	1691	13.35	15
1B	Eucalyptus flocktoniae	1692	12.15	15
1B	Eucalyptus flocktoniae	1693	8.65	15
1B	Eucalyptus flocktoniae	1694	8	9
1B	Eucalyptus flocktoniae	1695	8.4	9
1B	Eucalyptus flocktoniae	1696	7.25	8
1B	Eucalyptus flocktoniae	1697	x1	dead
1B	Melaleuca lanceolata	x233	0.4 - 2.6	Healthy
1B	Melaleuca lanceolata	x6	dead	

<p>| 1C | Eucalyptus flocktoniae | 1697 | 16.7 | 9 |
| 1C | Eucalyptus flocktoniae | 1698 | 17.15 | 19 |
| 1C | Eucalyptus flocktoniae | 1699 | 10.85 | 15 |
| 1C | Eucalyptus flocktoniae | 1700 | 8.4 | 5 |
| 1C | Eucalyptus flocktoniae | 1701 | 10.8 | 14 |
| 1C | Eucalyptus flocktoniae | 1702 | 10.6 | 14 |
| 1C | Eucalyptus flocktoniae | 1703 | 6.25 | 3 |
| 1C | Eucalyptus flocktoniae | x2 | dead |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Condition</th>
<th>Size</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca lanceolata</td>
<td>x252</td>
<td>dead</td>
<td>0.3 - 2.7</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td>x11</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1D

<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Condition</th>
<th>Size</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1704</td>
<td>9.85</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1705</td>
<td>9.95</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1706</td>
<td>8.9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1707</td>
<td>8.55</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1708</td>
<td>14.45</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1709</td>
<td>8.25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1710</td>
<td>8.3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1711</td>
<td>8.85</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1712</td>
<td>10.3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1713</td>
<td>8.35</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1714</td>
<td>9.95</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1715</td>
<td>11.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1716</td>
<td>6.35</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>x1</td>
<td><2 - seedling</td>
<td>1.7</td>
<td>Stressed</td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>x4</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td>x148</td>
<td>dead</td>
<td>0.3 - 2.2</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

1E

<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Condition</th>
<th>Size</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1717</td>
<td>11.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1718</td>
<td>10.85</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1719</td>
<td>10.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1720</td>
<td>8.05</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1721</td>
<td>10.1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1722</td>
<td>10.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1723</td>
<td>10.45</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1724</td>
<td>7.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1725</td>
<td>10.3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1726</td>
<td>12.4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1727</td>
<td>10.8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1728</td>
<td>18.6</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>x3</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td>x256</td>
<td>dead</td>
<td>0.4 - 2.6</td>
<td>Healthy</td>
</tr>
<tr>
<td>Templetia sulcata</td>
<td>x2</td>
<td>dead</td>
<td>0.5</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

2A

<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Condition</th>
<th>Size</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1729</td>
<td>6.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1730</td>
<td>10.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1731</td>
<td>21.4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1732</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1733</td>
<td>12.8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1734</td>
<td>21.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1735</td>
<td>14.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1736</td>
<td>12.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>x8</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>x3</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Templetia sulcata</td>
<td>x1</td>
<td>dead</td>
<td>0.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td>x134</td>
<td>dead</td>
<td>0.4 - 3.1</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

2B

<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Condition</th>
<th>Size</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1737</td>
<td>21.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondininensis</td>
<td>1738</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>#1739</td>
<td>#1740</td>
<td>#1741</td>
<td>#1742</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Eucalyptus kondininei</td>
<td>22</td>
<td>13.5</td>
<td>22</td>
<td>10.4</td>
</tr>
<tr>
<td>Eucalyptus flokcioniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus jlocktoniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodonaea stenoxysa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C Eucalyptus occidentalis</td>
<td>660</td>
<td>4</td>
<td>4.8</td>
<td>3.1, 3.35, 3.7, <2, <2, <2</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1744</td>
<td>6.9</td>
<td>11.4 - basal</td>
<td>10.2 - basal</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1746</td>
<td>2.6</td>
<td>3.6</td>
<td>2.1 - 3</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1747</td>
<td>4.2, 2.05</td>
<td>4.8, 10.7</td>
<td>4.65, 10.7</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1748</td>
<td>3.7, 3.4, 3.9, 2.8</td>
<td>3.1, 3.35, 3.7, <2, <2, <2</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1749</td>
<td>11.4 - basal</td>
<td>11.4 - basal</td>
<td>11.4 - basal</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1750</td>
<td>10.2 - basal</td>
<td>10.2 - basal</td>
<td>10.2 - basal</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1751</td>
<td>6.9 - basal</td>
<td>6.9 - basal</td>
<td>6.9 - basal</td>
</tr>
<tr>
<td>Dodonaea stenoxysa</td>
<td>x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodonaea stenoxysa</td>
<td>x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x35</td>
<td><2 - seedling</td>
<td>1.1 - 3</td>
<td>1.1 - 3</td>
</tr>
<tr>
<td>Melaleuca lanceolata</td>
<td>x3</td>
<td><2 - seedling</td>
<td>1.1 - 3</td>
<td>1.1 - 3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x17</td>
<td><2 - seedling</td>
<td>1.1 - 3</td>
<td>1.1 - 3</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x70</td>
<td><2 - seedling</td>
<td>1.1 - 3</td>
<td>1.1 - 3</td>
</tr>
<tr>
<td>2D Melaleuca lateriflora</td>
<td>1752</td>
<td>8.1, 7, 3.3, 4.3, 6.5, 4.15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1753</td>
<td>5.1, 4.55, 5.4, 4.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1754</td>
<td>9.1, 6.2, 6.2, 6.2, 2.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1755</td>
<td>5.5, 4.9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1756</td>
<td>5.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1757</td>
<td>dead</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1758</td>
<td>3.5, 3.9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1759</td>
<td>5.5, 5.2, 7.7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1760</td>
<td>5.15, 5.8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1761</td>
<td>5.7, 2.75, 5.4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1762</td>
<td>4.5, 6.3, 8.25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1763</td>
<td>4.7, 5.5, 6.5, 5.3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1764</td>
<td>4.65, 10.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>1765</td>
<td>6.3, 4.85, 6.42</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x6</td>
<td><2 - seedling</td>
<td>2.5 - 4</td>
<td>Stressed</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x8</td>
<td>dead</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2K Melaleuca strobophylla</td>
<td>1766</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1767</td>
<td>3.5, 2.8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1768</td>
<td>3, 2.2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1769</td>
<td>4.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1770</td>
<td>3, 2.9, 3.3, 4.8, <2, <2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1771</td>
<td>5.1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1772</td>
<td>4.05</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1773</td>
<td>4.3, 2.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1774</td>
<td>4.7, 6.9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1775</td>
<td>5.1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1776</td>
<td>5.3, 5.5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1777</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>MeMallaleuca lateriflora lateriflora</td>
<td>1778</td>
<td>8.8, 4.7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>MeMallaleuca lateriflora lateriflora</td>
<td>1779</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

3A
- **Melaleuca** strobophylla 1780: 5.5
- **Melaleuca** strobophylla 1781: 9.8
- **Melaleuca** strobophylla 1782: 6
- **Melaleuca** halmaturorum 1783: 6
- **Melaleuca** halmaturorum 1784: 5.8, 3.3
- **Melaleuca** strobophylla 1785: 9.5
- **Melaleuca** strobophylla 1786: 4.5, 2.5, 3.4
- **Melaleuca** strobophylla 1787: 3.8
- **Melaleuca** strobophylla 1788: 3.7
- **Melaleuca** strobophylla 1789: 3.6
- **Melaleuca** strobophylla 1790: 3.3
- **Melaleuca lateriflora lateriflora** 1791: 3.2, 3.8
- **Melaleuca strobophylla** 951: 3.7

3B
- **Melaleuca** strobophylla 1792: 5.1, 6
- **Melaleuca** strobophylla 1793: 4.8
- **Melaleuca** strobophylla 1794: 4.3
- **Melaleuca** strobophylla 1795: 3.6, 3.7
- **Melaleuca** strobophylla 1796: 3.7, 3.5
- **Melaleuca** strobophylla 1797: 3.5, 3.3, 2.5, 2.2, 3
- **Melaleuca** strobophylla 1798: 3.1
- **Melaleuca** strobophylla 952: 5.2
- **Melaleuca** strobophylla 1800: 7.2
- **Melaleuca** strobophylla 1801: 8.4, 12.5, 5, 6, 18, 6, 3.5
- **Melaleuca** strobophylla 1802: 12.8
- **Melaleuca** strobophylla 951: 8.4, 9

3C
- **Melaleuca** strobophylla 1804: 19.5, 6
- **Melaleuca** strobophylla 1805: 4.4
- **Melaleuca** strobophylla 1806: 4.7, 5.5, 3.8, 2.3
- **Melaleuca** strobophylla 1807: 5.4
- **Eucalyptus occidentalis** 1808: 30.7
- **Melaleuca** strobophylla 1809: 5.6, 7.7
- **Melaleuca halmaturorum** 1810: 4.9, 4.3, 2.6, 3, 3.8, 3, 4.7, 4.3, 5.2

3D
- **Melaleuca** halmaturorum 1811: 8.3
- **Melaleuca** halmaturorum 1812: 9.2, 5.7
- **Melaleuca** halmaturorum 1813: 7.2
- **Melaleuca** strobophylla 1814: 27.9
- **Melaleuca** halmaturorum 1815: 10.4, 11.5
- **Melaleuca** strobophylla 1816: 36.2
- **Melaleuca** halmaturorum 1817: 11.8

3E
- **Melaleuca** halmaturorum 1818: 25.5
- **Melaleuca** halmaturorum 1819: 8.8
- **Melaleuca** halmaturorum 1820: dead
- **Melaleuca** halmaturorum 1821: 11
- **Melaleuca** halmaturorum 1822: 11, 16, 9.7
- **Melaleuca** halmaturorum 1823: 7.0, 8.1, 16.4
<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Eucalyptus flocktoniae</td>
<td>1824</td>
<td>10.35</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1825</td>
<td>42.1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1826</td>
<td>27.5</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>x2</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Eucalyptus kondininensis</td>
<td>1827</td>
<td>29</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>x1</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>Eucalyptus kondininensis</td>
<td>1828</td>
<td>45.5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1829</td>
<td>25.15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1830</td>
<td>11</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1831</td>
<td>23.3</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>1 D</td>
<td>Eucalyptus kondininensis</td>
<td>1832</td>
<td>19</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1833</td>
<td>31.1</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1834</td>
<td>15.8, 12.5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1 E</td>
<td>Eucalyptus kondininensis</td>
<td>x1</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1835</td>
<td>11.5, 4.8, 11.7, 8.1, 6.8, 7.1, 4.2, 7.6, 5.1, 4, 7.3, 5.6, 5.5, multiple <2</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>x1</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1836</td>
<td>6.5, 4.2, 5.2, 10.5, 7.3, 6.6, 2.6, 2.8, 4.2, 3.8, 4.5, 6.5, 3.4, 3.5, multiple <2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus flocktoniae</td>
<td>1837</td>
<td>33.3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1838</td>
<td>6.4, 5.5, 6.35, 6.65, 5, 2.95, 7.5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1839</td>
<td>39</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1840</td>
<td>26.2</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lateriflora lateriflora</td>
<td>x1</td>
<td><2</td>
<td></td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>2 C</td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1841</td>
<td>3.9, 4.9, 5.6</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1842</td>
<td>7.3, 9.1, 5.3, 18.3, multiple <2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>1843</td>
<td>29.7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus kondininensis</td>
<td>x1</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santalum acuminatum</td>
<td>x1</td>
<td>2</td>
<td></td>
<td>Stressed</td>
</tr>
<tr>
<td>2 D</td>
<td>Eucalyptus flocktoniae</td>
<td>1844</td>
<td>29.5</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Santalum acuminatum</td>
<td>1845</td>
<td>11.3 - basal</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Alyxia buxifaolia</td>
<td>x1</td>
<td>2.2</td>
<td></td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>2 E</td>
<td>Alyxia buxifaolia</td>
<td>x1</td>
<td>2</td>
<td></td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>3 A</td>
<td>Alyxia buxifaolia</td>
<td>x1</td>
<td>2</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Santalum acuminatum</td>
<td>1846</td>
<td>3.05</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Melaleuca lateriflora lateriflora</td>
<td>1847</td>
<td>4.1, 7.5, 4.9, 3.2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3 B</td>
<td>Eucalyptus kondininensis</td>
<td>1848</td>
<td>21.5</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Melaleuca strobyphylla</td>
<td>1849</td>
<td>7.2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmaturorum</td>
<td>1850</td>
<td><2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Melaleuca strobyphylla</td>
<td>1850</td>
<td>7.4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Melaleuca strobyphylla</td>
<td>1851</td>
<td>8.7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1879</td>
<td>11.9</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1880</td>
<td>11.8</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1881</td>
<td>20.7</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1882</td>
<td>8.7</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1883</td>
<td>12.5</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1884</td>
<td>11.6</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1885</td>
<td>7.1</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1886</td>
<td>8.35</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1887</td>
<td>13.4</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1888</td>
<td>15</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>x1</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1889</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1890</td>
<td>14.5</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus kondeninsis</td>
<td>1891</td>
<td>13.05</td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Date</td>
<td>Height</td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1892</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1893</td>
<td>16.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1894</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1895</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1896</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1897</td>
<td>9.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1898</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1899</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1900</td>
<td>21.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1901</td>
<td>9.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1902</td>
<td>13.95, 13.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1903</td>
<td>15.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1904</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1905</td>
<td>31.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1906</td>
<td>9.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1907</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1908</td>
<td>17.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1909</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1910</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1911</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1912</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1913</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1914</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1915</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1916</td>
<td>10.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1917</td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1918</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1919</td>
<td>11.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1920</td>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 B

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1902</td>
<td>13.95, 13.35</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1903</td>
<td>15.05</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1904</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1905</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1906</td>
<td>9.85</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1907</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1908</td>
<td>17.35</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1909</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1910</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1911</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1912</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1913</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1914</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1915</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1916</td>
<td>10.35</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1917</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1918</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1919</td>
<td>11.55</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1920</td>
<td>9.6</td>
<td></td>
</tr>
</tbody>
</table>

2 C

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1914</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1915</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1916</td>
<td>10.35</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1917</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1918</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1919</td>
<td>11.55</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus flocktoniae</td>
<td>1920</td>
<td>9.6</td>
<td></td>
</tr>
</tbody>
</table>

2 D

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1921</td>
<td>67.9</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1922</td>
<td>37.45 - basal</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1923</td>
<td>54.2</td>
<td></td>
</tr>
</tbody>
</table>

2 E

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1924</td>
<td>15 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1925</td>
<td>9.4 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1926</td>
<td>24.4 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1927</td>
<td>23.5 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1928</td>
<td>multiple <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1929</td>
<td>multiple <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1930</td>
<td>15.5, 29.4, 10.5, 24.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td>1931</td>
<td>9.2, 11.05</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>xs</td>
<td><2 - seedlings</td>
<td>0.05</td>
</tr>
</tbody>
</table>

3 A

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1924</td>
<td>15 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1925</td>
<td>9.4 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1926</td>
<td>24.4 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1927</td>
<td>23.5 - basal</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1928</td>
<td>multiple <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca interfolia interfolia</td>
<td>1929</td>
<td>multiple <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1930</td>
<td>15.5, 29.4, 10.5, 24.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td>1931</td>
<td>9.2, 11.05</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>xs</td>
<td><2 - seedlings</td>
<td>0.05</td>
</tr>
</tbody>
</table>

3 B

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Height</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca halmaturorum</td>
<td>1932</td>
<td>5.4, 5.8, 3.5, 4.1, 3.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca halmaturorum</td>
<td>1933</td>
<td>13.4 - basal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1924</td>
<td>1934</td>
<td>1935</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>*Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zrelephylla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zrelephylla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2, 22.5, 16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1, 2.9, multiple <2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3, 4.3, 5.2, 5.1, 4, 8.5, 9, 4.4, 8.9, 3.5, 4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.5, 7.1, 11, 14, 10.3, 8.3, 8, 7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.9, 14, 7.2, 7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3, 8.6, 5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1, 8.8, 5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holmaturorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5, 7.2, 3.9, 4.6, 11.5, 15.3, 8.3, 7.9, 5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>Species</td>
<td>Tag #</td>
<td>DBH (cm) (2000)</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1 A</td>
<td>Banksia speciosa</td>
<td>701</td>
<td>12.8, 10.4, 10.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>703</td>
<td>37, 4.3, 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>704</td>
<td>8.95, 11, 10.7, 5.8, 3.95, 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>705</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>706</td>
<td>12.9, 12.65, 10.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>707</td>
<td>6.2, 4.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>708</td>
<td>3.45, 9.2, 2.65, 6.85, 3.8, 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>709</td>
<td>2.8, 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>710</td>
<td>7.4, 4.4, 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>711</td>
<td>9.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>712</td>
<td>8.2, 4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>713</td>
<td>6.2, 3.45, 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>714</td>
<td>4.45, 5</td>
</tr>
<tr>
<td>1 B</td>
<td>Banksia speciosa</td>
<td>715</td>
<td>9.7, 4.4, 7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>716</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>717</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>718</td>
<td>11.4, 11.1, 7.7</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>719</td>
<td>15.1, 10.9, 8.9</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>720</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>Melaleuca sp.</td>
<td>721</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>722</td>
<td>10.8, 4.3, 2, 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>723</td>
<td>dead</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>724</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>725</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>726</td>
<td>7.9, 11, 11.2</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>727</td>
<td>6, 11.7, 3.2, 5.5</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>728</td>
<td>3.5, 4</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>729</td>
<td>3.3, 3, 5.6</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>730</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>731</td>
<td>dead</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>732</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>733</td>
<td>2.3, 3.8</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>734</td>
<td>5.85, 7.2</td>
</tr>
<tr>
<td>1 C</td>
<td>Nuytsia floribunda</td>
<td>735</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>736</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>737</td>
<td>10.4, 10.5, 6.1, 10.1</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>738</td>
<td>13.6, 6.5, 7</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>739</td>
<td>11.1, 5.2, 6</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>740</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclopis</td>
<td>741</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>742</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>743</td>
<td>7.8, 14.6</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>744</td>
<td>13.1, 7.4, 5.3</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>745</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>Nuytsia floribunda</td>
<td>746</td>
<td>6.9, 7.1, 7.3</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>747</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>748</td>
<td>8.3</td>
</tr>
<tr>
<td>1 D</td>
<td>Banksia speciosa</td>
<td>749</td>
<td>6.5, 3.5, 3.5, 6.6</td>
</tr>
<tr>
<td></td>
<td>Banksia speciosa</td>
<td>750</td>
<td>4.4, 9.2, 7.8, 5.4, 5.1, 6.6, 11.2</td>
</tr>
</tbody>
</table>
Table of Tree Measurements

<table>
<thead>
<tr>
<th>Species</th>
<th>Measurement 1</th>
<th>Measurement 2</th>
<th>Measurement 3</th>
<th>Measurement 4</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banksia speciosa</td>
<td>751</td>
<td>11.3, 6.5, 8.7, 4.1</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>752</td>
<td>2.9, 2.9, 2.5, <2 x 4</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>753</td>
<td>4.9, 8.3, 8.1</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>754</td>
<td>6.6, 7.2, 3.5, 7.8, 3.1, 3</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>755</td>
<td>11.7, 10.3, 3.7, 3.5, 7.1</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>756</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>663</td>
<td>3.4</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>1E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>757</td>
<td>7.3</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>758</td>
<td>10, 21.9</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>759</td>
<td>7.9</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>760</td>
<td>5.9</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>761</td>
<td>4</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>664</td>
<td>2.9</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x4</td>
<td><2</td>
<td>1.7 - 2.9</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>762</td>
<td>4.2</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>763</td>
<td>3.3</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>764</td>
<td>5.1</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>665</td>
<td>2.6</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>666</td>
<td>2.5</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>765</td>
<td>5.9</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>766</td>
<td>3.65</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>767</td>
<td>6</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>768</td>
<td>7.9</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>667</td>
<td>3.5</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>668</td>
<td>3.5</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>669</td>
<td>5.3</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x4</td>
<td><2</td>
<td>1.2 - 2.9</td>
<td></td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>Melaleuca sp.</td>
<td>x1</td>
<td><2</td>
<td>0.4</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>769</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>770</td>
<td>4.4</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>771</td>
<td>5</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>772</td>
<td>14.1</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>673</td>
<td>3.6</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>671</td>
<td>2.8</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>672</td>
<td>2.9</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>670</td>
<td>2.6</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>674</td>
<td>3.5</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>675</td>
<td>2.6</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x6</td>
<td><2</td>
<td>2.1 - 2.1</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>x3</td>
<td><2</td>
<td>2.4</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x4</td>
<td><2</td>
<td>1.1 - 1.7</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>773</td>
<td>4.4</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>769</td>
<td>4.7</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>774</td>
<td>5.3</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>775</td>
<td>9.2</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>776</td>
<td>11.3</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>777</td>
<td>3.3</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>778</td>
<td>6.5</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>779</td>
<td>7</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>780</td>
<td>5.45</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>781</td>
<td>3.7</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Species</td>
<td>Value</td>
<td>Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>782</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>783</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>784</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>785</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>786</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>787</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>788</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>683</td>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>684</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>685</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>686</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>687</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>688</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>689</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>690</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>691</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>692</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>693</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>694</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>695</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>696</td>
<td>6.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>697</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>698</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>699</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>700</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>701</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>702</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>703</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>704</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>705</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>706</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>707</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>708</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>709</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>710</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x24</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>x77</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>x39</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 E

<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>789</td>
<td>8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>790</td>
<td>dead</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>791</td>
<td>4.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>792</td>
<td>3.6</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>793</td>
<td>6.85</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>794</td>
<td>3.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>795</td>
<td>8.9</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>796</td>
<td>4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>797</td>
<td>5.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>798</td>
<td>3.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>799</td>
<td>9.2</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>800</td>
<td>5.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>801</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>802</td>
<td>2.8</td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>803</td>
<td>3.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>804</td>
<td>2.55</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>805</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>806</td>
<td>3.25</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>807</td>
<td>4.35</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x24</td>
<td><2</td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>x77</td>
<td><2</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2</td>
</tr>
</tbody>
</table>

3 A

<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>802</td>
<td>4.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>803</td>
<td>4.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>804</td>
<td>13.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>805</td>
<td>2.4</td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>806</td>
<td>2.95</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>807</td>
<td>4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>808</td>
<td>3.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>809</td>
<td>2.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>810</td>
<td>4.5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>811</td>
<td>3.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x20</td>
<td><2</td>
</tr>
<tr>
<td>Melaleuca cajitulosa</td>
<td>x39</td>
<td><2</td>
</tr>
<tr>
<td>Species</td>
<td>Value</td>
<td>Health</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>782</td>
<td>5.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>783</td>
<td>6.5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>784</td>
<td>11.5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>785</td>
<td>4.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>786</td>
<td>7.2, 6</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>787</td>
<td>3.5, 3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>788</td>
<td>4.9</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>683</td>
<td>3.05</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>680</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>679</td>
<td>2.5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>678</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>676</td>
<td>3.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>677</td>
<td>3.4</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>682</td>
<td>3.7, 2.9, 2.8, <2</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x5</td>
<td><2</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x49</td>
<td><2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>789</td>
<td>8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>790</td>
<td>dead</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>791</td>
<td>4.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>792</td>
<td>3.6</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>793</td>
<td>6.85</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>795</td>
<td>3.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>794</td>
<td>8.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>797</td>
<td>4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>796</td>
<td>5.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>799</td>
<td>3.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>798</td>
<td>9.2</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>800</td>
<td>5.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>681</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>684</td>
<td>2.8</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>685</td>
<td>3.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>686</td>
<td>2.55</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>687</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>689</td>
<td>3.25</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>688</td>
<td>4.35</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x24</td>
<td><2</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x77</td>
<td><2</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>802</td>
<td>4.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>803</td>
<td>4.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>801</td>
<td>13.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>698</td>
<td>2.4</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>700</td>
<td>2.9, 3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>699</td>
<td>4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>697</td>
<td>3.4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>695</td>
<td>2.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>694</td>
<td>4.5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>696</td>
<td>3.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x20</td>
<td><2</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x39</td>
<td><2</td>
</tr>
</tbody>
</table>
3B

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>804</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>805</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>806</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>807</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>808</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>809</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>810</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>680</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>693</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>691</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>692</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>902</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>903</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>811</td>
<td>Multiple ≤2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x31</td>
<td>≤2</td>
<td>0.5 - 3</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>x106</td>
<td>≤2</td>
<td>1.8 - 3.5</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

3C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cyclops</td>
<td>812</td>
<td>3.1, 3.3, 3.7, 3.8, ≤2 x 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>813</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>814</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>815</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>816</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>817</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>818</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>819</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>904</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x8</td>
<td>≤2</td>
<td>1 - 2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>x68</td>
<td>≤2</td>
<td>1.5 - 3</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

3D

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>820</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>821</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>822</td>
<td>≤2 x 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>823</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>824</td>
<td>4.5, ≤2 x 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>825</td>
<td>2.3, ≤2 x 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>826</td>
<td>3.6, ≤2 x 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>827</td>
<td>2.5, 3.1, ≤2 x 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>828</td>
<td>2.8, ≤2 x 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>829</td>
<td>3.1, 3.8, ≤2 x 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>x19</td>
<td>≤2</td>
<td>1 - 2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x7</td>
<td>≤2</td>
<td>1.3 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x4</td>
<td>≤2</td>
<td>1.5 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>x19</td>
<td>≤2</td>
<td>1 - 2.8</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

3E

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cyclops</td>
<td>830</td>
<td>3.9, ≤2 x 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>831</td>
<td>2.1, 2.1, ≤2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>832</td>
<td>Dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td>≤2</td>
<td>2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca cuneifolia</td>
<td>x3</td>
<td>≤2</td>
<td>2</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

COOMALBIDGUP - Transect 2

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Banksia spectosa</td>
<td>833</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Diameter (cm)</td>
<td>Height (m)</td>
<td>Health</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>834</td>
<td>2.2, 6.2, 7.75</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>835</td>
<td>2.85, 2.55, <2, <2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>836</td>
<td>5.45</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>837</td>
<td>13.2, 6.4</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>838</td>
<td>15.4, 5.9</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>839</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>840</td>
<td><2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>841</td>
<td>4.8, 3.65</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>842</td>
<td>fallen - <2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>843</td>
<td>7.85</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>844</td>
<td>7.4, 35</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>845</td>
<td>6, <2 x 6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>846</td>
<td>17, 7, 10.7</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>847</td>
<td>2.8, 3.2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>848</td>
<td>6.1, 3.4</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banlaia speciosa</td>
<td>856</td>
<td>5.4, 4.6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>849</td>
<td>13.5, 10.5</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>850</td>
<td>8.05, 5.7</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>851</td>
<td>7.55, 6.45, 3.05</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>852</td>
<td>4, <2, <2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyssa floribunda</td>
<td>853</td>
<td>25.8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyssa floribunda</td>
<td>854</td>
<td>62, 8</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>855</td>
<td>4, 4.3, 10.35</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>857</td>
<td>4, 5.7, 5.2, 7.45</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>858</td>
<td>5.7, 4.85</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>859</td>
<td>3.85, 2.9</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>909</td>
<td>4.45, <2, <2, <2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticuliris</td>
<td>860</td>
<td>6.2, 5, <2, <2, <2</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>861</td>
<td>6, 3.1, 2.8</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>862</td>
<td>7.1, 6.3, 3.1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>863</td>
<td>8.6, 4.4, 4.3, 7.7</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticuliris</td>
<td>864</td>
<td>15.6</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>865</td>
<td>20.4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>866</td>
<td>12.1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>867</td>
<td>14.3, 9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>868</td>
<td>4.75</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>869</td>
<td>5.9</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticuliris</td>
<td>874</td>
<td>7.5, 11.7</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>870</td>
<td>12</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>871</td>
<td>16.7, 16.35</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>872</td>
<td><2 x 6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>873</td>
<td><2</td>
<td>2.5</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>875</td>
<td>14.3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>876</td>
<td>2.95</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>877</td>
<td>4.3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticuliris</td>
<td>878</td>
<td>6.5, 6</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>879</td>
<td>16.8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banksia speciosa</td>
<td>880</td>
<td>2.9</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>881</td>
<td>4.4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>882</td>
<td>3.2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>883</td>
<td>5.1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Value</td>
<td>Description</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>884</td>
<td>6, 3.1, 3.1, <2, <2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>885</td>
<td>17.7</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>886</td>
<td>7.4, 0.2, 3.4, 3.5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>887</td>
<td>2.7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x15</td>
<td><2</td>
<td>8 Slightly stressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>x1</td>
<td><2</td>
<td>7 healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>888</td>
<td>5.5, 2.8, <2, <2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>889</td>
<td>17.7, 14, 13.5</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>890</td>
<td>6.7</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>891</td>
<td>3.7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>892</td>
<td>14, 12.2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x7</td>
<td><2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>x31</td>
<td><2</td>
<td>8 Healthy, 20 slightly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stressed, 3 stressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>893</td>
<td>9.7, 7.6, 11.6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>894</td>
<td>4.9, 4.2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>895</td>
<td>6.5, 2.8, 3.5, <2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>896</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>897</td>
<td>2.7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>898</td>
<td>3.9</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>899</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>900</td>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>901</td>
<td>5.1 - partly fallen</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>902</td>
<td>4.8</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>903</td>
<td>fallen</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>904</td>
<td>11.1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>905</td>
<td>7.2, 2.4, 3.9</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>x31</td>
<td><2</td>
<td>25 Healthy, 6 stressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x12</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x4</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>907</td>
<td>3.4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>908</td>
<td>3.3</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>909</td>
<td>2.8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>910</td>
<td>4</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>911</td>
<td>3.6</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>912</td>
<td>4.2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>913</td>
<td>8, 5.1, 4.1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>914</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>915</td>
<td>8, 2.9</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>916</td>
<td>3.1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>917</td>
<td>4.1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>918</td>
<td>3.4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>919</td>
<td>4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>920</td>
<td>5.1, 2.5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>921</td>
<td>7.5, 5.2, 3.9, 7</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>922</td>
<td>3.6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>923</td>
<td>3.7</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x35</td>
<td><2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cunicularis</td>
<td>x5</td>
<td><2</td>
<td>11 - 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 D</td>
<td>Eucalyptus occidentalis</td>
<td>922</td>
<td>2.85</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>923</td>
<td>4.6</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Diameter</td>
<td>Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>912</td>
<td>2.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>911</td>
<td>2.8</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>910</td>
<td>2.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>908</td>
<td>2.2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x34</td>
<td><2</td>
<td>1.2-2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x34</td>
<td><2</td>
<td>1.8-2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x13</td>
<td><2</td>
<td>0.9-1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>924</td>
<td>3.2,6</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>925</td>
<td>12.6</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>926</td>
<td>7.4</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>927</td>
<td>7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>928</td>
<td>11.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>929</td>
<td>9.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>930</td>
<td>11</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>931</td>
<td>13.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>932</td>
<td>9.5,6,5.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>933</td>
<td>13.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>934</td>
<td>9.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>935</td>
<td>6</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>905</td>
<td>3</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>907</td>
<td>2.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>906</td>
<td>2.4</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x35</td>
<td><2</td>
<td>1-2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x33</td>
<td><2</td>
<td>1-1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia dentifera</td>
<td>x2</td>
<td><2</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>936</td>
<td>8.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>937</td>
<td>5.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>938</td>
<td>14.8</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>939</td>
<td>39.9</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>940</td>
<td>6.3</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>941</td>
<td>5.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>942</td>
<td>4.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>943</td>
<td>7.3</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>944</td>
<td>4.5</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>945</td>
<td>4.2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>946</td>
<td>3.4</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>947</td>
<td>3.65</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>948</td>
<td>4.8</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>949</td>
<td>5.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x10</td>
<td><2</td>
<td>1-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x36</td>
<td><2</td>
<td>1-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x7</td>
<td><2</td>
<td>2-2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>945</td>
<td>6.25</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>946</td>
<td>4.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>947</td>
<td>27.75</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>948</td>
<td>6.2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>949</td>
<td>6.2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>950</td>
<td>5.3</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>951</td>
<td>5.7</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td><2</td>
<td>2.2-2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x2</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 B
- Eucalyptus occidentalis: 945 6.25
- Eucalyptus occidentalis: 946 4.7
- Melaleuca cuticularis: 947 27.75
- Eucalyptus occidentalis: 948 6.2
- Eucalyptus occidentalis: 949 6.2
- Eucalyptus occidentalis: 950 5.3
- Eucalyptus occidentalis: 951 5.7
- Eucalyptus occidentalis: x3 <2
- Melaleuca cuticularis: x2 <2
- Acacia cyclops: x3 <2

15
19
19
11
20 Healthy, 13 slightly stressed
3 Healthy, 4 stressed
Slightly stressed
Healthy
Stressed
30 Healthy, 6 stressed
15
15
19
19
19
19
19
15
2
<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height (m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 C</td>
<td>Eucalyptus occidentalis</td>
<td>949</td>
<td>6.5</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Melaleuca cicutaria</td>
<td>950</td>
<td>13</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Melaleuca cicutaria</td>
<td>951</td>
<td>10, 5.7, 14.7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>923</td>
<td>4.7</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>924</td>
<td>4.1</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>925</td>
<td>4.5</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>926</td>
<td>3.75</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>927</td>
<td>6.4</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>928</td>
<td>5.3</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>929</td>
<td>4.7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>930</td>
<td>4.2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Melaleuca cicutaria</td>
<td>912</td>
<td><2</td>
<td>1.5 - 2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>911</td>
<td><2</td>
<td>1.5 - 2.9</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2</td>
<td>3</td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>3 D</td>
<td>Melaleuca cicutaria</td>
<td>952</td>
<td>7.05, 9.1, 5.4</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Melaleuca cicutaria</td>
<td>x14</td>
<td><2</td>
<td>2</td>
<td>10 Healthy, 4 slightly stressed</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td><2</td>
<td>2 - 3.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>3 E</td>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2</td>
<td>3.5</td>
<td>Healthy</td>
</tr>
</tbody>
</table>

Coomalbidgep - Transect 3

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height (m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Eucalyptus occidentalis</td>
<td>953</td>
<td>8.85</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>954</td>
<td>4.9</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>955</td>
<td>2.55</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>956</td>
<td>4.65</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>957</td>
<td>7.7</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>958</td>
<td>8.9</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>959</td>
<td>8.8</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>960</td>
<td>3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>961</td>
<td>3.8</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>962</td>
<td>5.2</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x2</td>
<td><2 - seedlings</td>
<td>1 - 1.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 B</td>
<td>Eucalyptus occidentalis</td>
<td>963</td>
<td>2.7</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>964</td>
<td><2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>965</td>
<td>4.5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>966</td>
<td>4.6</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>968</td>
<td>6.92</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>967</td>
<td>4.15</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>969</td>
<td>7.85</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>970</td>
<td>2.5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>971</td>
<td><2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>1.2 - 2.2</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 C</td>
<td>Eucalyptus occidentalis</td>
<td>972</td>
<td>3.7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>973</td>
<td>2.5</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>974</td>
<td>4.45</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>975</td>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>976</td>
<td>2.6</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Species</td>
<td>ID</td>
<td>Condition</td>
<td>Notes</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>977</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>978</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>979</td>
<td>3.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>980</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>981</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>982</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>983</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>984</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>985</td>
<td>3.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>986</td>
<td>5.45, 3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>987</td>
<td>5.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>988</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>989</td>
<td>17.7, 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>990</td>
<td>5.7, 12.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>991</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>992</td>
<td>3.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>993</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>994</td>
<td>5.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>995</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>996</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>997</td>
<td>6.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>998</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1000</td>
<td>10.4, 4.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1001</td>
<td>6.3, 8.8, 8.9, 8.3, 13.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1002</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1003</td>
<td>11.4, 6.1, 15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1004</td>
<td>8.7, 10.3, 6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1005</td>
<td>8.1, 4.1, 5.5, 7.9, 4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1006</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2 - seedlings</td>
<td>0.6 - 0.9</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2 - seedlings</td>
<td>2.2</td>
<td>Very stressed</td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>1.8</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>1.5</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1009</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1010</td>
<td>12.4, 12.1, 9.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1011</td>
<td>9.8, 4.3, 4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1012</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1013</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1014</td>
<td>4.7, 3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1015</td>
<td>7.2, 8.2, 8.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1016</td>
<td>8.8, 10.4, 7.2, 7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1017</td>
<td>7.3, 7.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1018</td>
<td>2.5, <2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1019</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1020</td>
<td>9.2</td>
<td>0.7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td><2 - seedlings</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x3</td>
<td></td>
<td>8.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Melaleuca culeolaris</td>
<td>x193</td>
<td><2 - seedlings</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x1</td>
<td><2</td>
<td>1.3</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

2 C

<table>
<thead>
<tr>
<th></th>
<th>1021</th>
<th>18,2, 11, 10.6, 14.1, 4.8, 4.6</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1022</td>
<td>9.8</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1023</td>
<td>12.2, 7.3</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1024</td>
<td>3.5, 3.7</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1025</td>
<td>6.4</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1026</td>
<td>6.9, 11.4</td>
<td>21</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1027</td>
<td>9.6, 10</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1028</td>
<td>3.6</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1029</td>
<td>3.3</td>
<td>9</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1030</td>
<td>11.7, 5.9</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1031</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1032</td>
<td>13.5, 4.4, 3.6, 5</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1033</td>
<td>5.7</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1034</td>
<td>9.4, 10.4, 11.5</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1035</td>
<td>8.6</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1036</td>
<td><2 - seedlings</td>
<td>0.5</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

2 D

<table>
<thead>
<tr>
<th></th>
<th>1037</th>
<th>14.9, 6.4, 13.4, 9.4</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1038</td>
<td>9.4, 5.3, 7.9</td>
<td>14</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1039</td>
<td>6.3</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1040</td>
<td>4.4</td>
<td>14</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1041</td>
<td>6.10,1</td>
<td>10</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1042</td>
<td>13.7, 9.7, 7.2</td>
<td>14</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1043</td>
<td>0.5, 6.4, 2</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1044</td>
<td>3.9, 3.5, 3.5, 3.9, 4.3</td>
<td>6</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1045</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1046</td>
<td>5.5</td>
<td>9</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x1</td>
<td><2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

2 E

<table>
<thead>
<tr>
<th></th>
<th>1047</th>
<th>6.5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1048</td>
<td>7.3</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1049</td>
<td>10.5, 9.1, 10.4</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1050</td>
<td>12.7, 10.9, 10.5</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1051</td>
<td>11.15, 1</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1052</td>
<td>6.7, 3.5</td>
<td>8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1053</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1054</td>
<td>4.8</td>
<td>5</td>
</tr>
</tbody>
</table>

3 A

<table>
<thead>
<tr>
<th></th>
<th>1055</th>
<th>14.6, 12.5</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td><2 - seedlings</td>
<td>0.6 - 1.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1056</td>
<td>9.3, 8.7, 4.9</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1057</td>
<td>13.7, 6.1, 6.1</td>
<td>16</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1058</td>
<td>3.7, 3.2</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1059</td>
<td>12.2, 8</td>
<td>16</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1060</td>
<td>11.5, 9.5</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1061</td>
<td>12.6</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1062</td>
<td>10, 8,9</td>
<td>3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x4</td>
<td><2 - seedlings</td>
<td>0.5 - 1.1</td>
</tr>
<tr>
<td>Melaleuca culeolaris</td>
<td>x13</td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x1</td>
<td><2</td>
<td>0.7</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1063</td>
<td>10.4, 6.9, 9.5</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1064</td>
<td>16.9, 16.4, 9.7, 16.7, 12.1</td>
<td>16</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1065</td>
<td>10.6, 5.4</td>
<td>14</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>998</td>
<td>12.3, 11.5</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1067</td>
<td>12.4, 8, 11, 11.3</td>
<td>18</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1058</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1069</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x100</td>
<td><2 - seedlings</td>
<td>0.5 - 1.8</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x6</td>
<td><2</td>
<td>1.8</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>932</td>
<td>9.7, 12</td>
<td>14</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2 - seedlings</td>
<td>1.5</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x118</td>
<td><2 - seedlings</td>
<td>1.3 - 2.1</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x2</td>
<td><2</td>
<td>1.8</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>x114</td>
<td><2</td>
<td>2 - 3.0</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>931</td>
<td>4.9</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x10</td>
<td><2</td>
<td>1.2 - 2.5</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x19</td>
<td><2</td>
<td>1.5 - 2.3</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1071</td>
<td>9.5, 12.2</td>
<td>16</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>934</td>
<td>11.4, 8.3</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>x8</td>
<td><2 - seedlings</td>
<td>1.8 - 2.8</td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>x11</td>
<td><2 - seedlings</td>
<td>1.5 - 2.5</td>
</tr>
</tbody>
</table>

COOMALBIDGUP - Transect 4

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Melaleuca cuticularis</td>
<td>1073</td>
<td>3.45</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Melaleuca cuticularis</td>
<td>1074</td>
<td>10.5, 12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca cuticularis</td>
<td>1075</td>
<td><2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca cuticularis</td>
<td>1076</td>
<td>3.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca cuticularis</td>
<td>1077</td>
<td>6.1, 4.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1078</td>
<td>6, multiple <2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1079</td>
<td>13.15, 13.3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1080</td>
<td>18.9, 16.7, 12.6, 13.2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca cuticularis</td>
<td>1081</td>
<td>6.5, multiple <2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca cuticularis</td>
<td>1082</td>
<td>14.35, 11.95</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2</td>
<td>1.75</td>
<td>Slightly stressed</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2 - seedlings</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>Melaleuca cuticularis</td>
<td>1083</td>
<td>5.5, 2.5, 7.6</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x11</td>
<td><2 - seedlings</td>
<td>0.8 - 2.4</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 D</td>
<td>Eucalyptus occidentalis</td>
<td>1084</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1085</td>
<td>17.3, 8.45, 11.65</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1086</td>
<td>3.7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1087</td>
<td>12.8, 10.85</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x1</td>
<td><2 - seedlings</td>
<td>0.8 - 2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x1</td>
<td>multiple <2</td>
<td>3</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1E</td>
<td>Eucalyptus occidentalis</td>
<td>1088</td>
<td>14.1, 10.1, 8.9</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1089</td>
<td>12.1, 8.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>1090</td>
<td>4.35, 6.9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1091</td>
<td>7.35, 8, 2.35, multiple <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1092</td>
<td>5.1, 5.9, 2.55, <2, <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1093</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1094</td>
<td>12.6, 9.35, 13.45</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1095</td>
<td>6.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1096</td>
<td>5.7, 4.05</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>x1</td>
<td><2 - seedlings</td>
<td>1.2</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x33</td>
<td><2 - seedlings</td>
<td>0.5 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>0.8 - 3.2</td>
<td>Healthy</td>
</tr>
<tr>
<td>1A</td>
<td>Melaleuca ciliularis</td>
<td>1097</td>
<td>3.5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1098</td>
<td>5.8</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1099</td>
<td>5.9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1100</td>
<td>12.10, 11.75, 7.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1101</td>
<td>3.8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1102</td>
<td>12.45, 9.25, 5.6</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1103</td>
<td>8.15, 2.75</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1104</td>
<td>11.9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1105</td>
<td>4.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1106</td>
<td>2.5, <2, <2, <2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1107</td>
<td>3.6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1108</td>
<td>3.75, 4.0</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1109</td>
<td>3.9, 9.45, 2.8, 3.3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x11</td>
<td><2 - seedlings</td>
<td>0.5 - 2.3</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>x2</td>
<td><2 - seedlings</td>
<td>1.2 - 2.3</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>1.8</td>
<td>Slightly stressed</td>
</tr>
<tr>
<td>2B</td>
<td>Eucalyptus occidentalis</td>
<td>1110</td>
<td>11</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1111</td>
<td>14.1, 12.5, 11.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1112</td>
<td>7.3, 3.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1113</td>
<td>6.8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1114</td>
<td>3.4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1115</td>
<td>9.5, 6.4, 5.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1116</td>
<td>3.5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1117</td>
<td>6.3, 3.4, 5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x7</td>
<td><2 - seedlings</td>
<td>1.1 - 2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>x14</td>
<td><2 - seedlings</td>
<td>0.5 - 1.5</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x14</td>
<td>multiple <2</td>
<td>2.2</td>
<td>Healthy</td>
</tr>
<tr>
<td>2C</td>
<td>Eucalyptus occidentalis</td>
<td>F548</td>
<td>15.2, 17.7, 13.1, 14.6</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1118</td>
<td>3.9, 2.1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1119</td>
<td>14.6, 8.5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1120</td>
<td>7.5, 6.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1121</td>
<td>4.3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1122</td>
<td>5.9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>1123</td>
<td>5.9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>x175</td>
<td><2 - seedlings</td>
<td>0.5 - 1.8</td>
<td>Healthy, 30% stressed, 20% stressed</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus occidentalis</td>
<td>x11</td>
<td><2 - seedlings</td>
<td>0.5 - 1.5</td>
<td>Stressed</td>
</tr>
<tr>
<td></td>
<td>Acacia cyclops</td>
<td>x11</td>
<td><2</td>
<td>2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>2D</td>
<td>Eucalyptus occidentalis</td>
<td>1124</td>
<td>15.2, 13.8</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca ciliularis</td>
<td>1125</td>
<td>2.8, 4.7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>1126</td>
<td>1127</td>
<td>1128</td>
<td>1129</td>
<td>1130</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td>1287</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca cuticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40% Slightly stressed, 60% dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80% Healthy, 20% stressed
<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>3.8, 2.2</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>4.1</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>4.3</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>3.6</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>3.9, <2</td>
<td>Healthy</td>
</tr>
<tr>
<td>Melaleuca cajucularis</td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td><2 - seedlings</td>
<td>Healthy</td>
</tr>
<tr>
<td>Acacia cyclops</td>
<td>0.1 - 1.3</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>0.4 - 2</td>
<td>Healthy</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>0.4 - 2.2</td>
<td>Dead, stressed</td>
</tr>
</tbody>
</table>
COYRECUP - Transect 1

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Banksia prionotes</td>
<td>1945</td>
<td>3.35, 23.3, 10.6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1946</td>
<td>2.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1947</td>
<td>10.7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1948</td>
<td>6.55</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1949</td>
<td>3.85</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Banksia prionotes</td>
<td>1950</td>
<td>10.05, 4.65, 2.4</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1951</td>
<td>7.5, 5.7, <2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1952</td>
<td>9.1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1953</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1954</td>
<td>9.95</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1955</td>
<td>13.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banksia prionotes</td>
<td>1956</td>
<td>6.2, 3.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>Allocasuarina huerellana</td>
<td>1957</td>
<td>25.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1958</td>
<td>15.1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1959</td>
<td>15, 11.05</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1960</td>
<td>3.75</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1961</td>
<td>3.3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1962</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>Allocasuarina huerellana</td>
<td>1963</td>
<td>18.6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1964</td>
<td>11.8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1965</td>
<td>dead</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1966</td>
<td>22</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1967</td>
<td>13.8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>Allocasuarina huerellana</td>
<td>1968</td>
<td>21.65</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1969</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1970</td>
<td>4.55</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1971</td>
<td>4.95</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1972</td>
<td>4.1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1973</td>
<td>11.6</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1974</td>
<td><2, seedling</td>
<td></td>
<td>Healthy</td>
</tr>
<tr>
<td>2 A</td>
<td>Allocasuarina huerellana</td>
<td>1975</td>
<td>dead</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1976</td>
<td>6.65</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1977</td>
<td>12.25</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1978</td>
<td>11.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1979</td>
<td>3.1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1980</td>
<td>3.7, <2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1981</td>
<td>7.4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>Allocasuarina huerellana</td>
<td>1982</td>
<td>dead</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1983</td>
<td>dead</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1984</td>
<td>7.8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1985</td>
<td>dead</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1986</td>
<td>4.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1987</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huerellana</td>
<td>1988</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>1989</td>
<td>8.7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Year(s)</td>
<td>Seedling</td>
<td>Diameter</td>
<td>Health Status</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>1990</td>
<td></td>
<td>4.1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Acacia acuminsis</td>
<td>1991</td>
<td></td>
<td>11.65</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Year(s)</th>
<th>Seedling</th>
<th>Diameter</th>
<th>Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casuarina obesa</td>
<td>1992</td>
<td></td>
<td>2.9</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1993</td>
<td></td>
<td>3.3</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1994</td>
<td></td>
<td>25.2</td>
<td>23</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1995</td>
<td></td>
<td>9.2</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1996</td>
<td></td>
<td>24.45</td>
<td>21</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>1997</td>
<td></td>
<td>8.9</td>
<td>8</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>1998</td>
<td></td>
<td>3.8</td>
<td>13</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>1999</td>
<td></td>
<td>6.6</td>
<td>11</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2000</td>
<td></td>
<td>20.6</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2001</td>
<td></td>
<td>15.9</td>
<td>17</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2002</td>
<td></td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2003</td>
<td></td>
<td>5.3</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2004</td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2005</td>
<td></td>
<td>5.3</td>
<td>19</td>
</tr>
<tr>
<td>Melaleuca uncinata</td>
<td>2006</td>
<td></td>
<td>6.7-2.9, 2.6, <2, <2</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2007</td>
<td></td>
<td>5.5</td>
<td>11</td>
</tr>
<tr>
<td>M. (johnsonii or brophi)</td>
<td>x8</td>
<td></td>
<td><2</td>
<td>1.8-2.5</td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td>x1</td>
<td></td>
<td><2</td>
<td>3</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x3</td>
<td></td>
<td><2</td>
<td>0.8-1.9</td>
</tr>
<tr>
<td>Darwinia dioicaesiana</td>
<td>x1</td>
<td></td>
<td><2</td>
<td>2.2</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>x10</td>
<td></td>
<td><2</td>
<td>0.9-2.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Year(s)</th>
<th>Seedling</th>
<th>Diameter</th>
<th>Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2008</td>
<td></td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2009</td>
<td></td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2010</td>
<td></td>
<td>8.6, 5</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2011</td>
<td></td>
<td>2.6-2.45, 3.5</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2012</td>
<td></td>
<td>5.85, 6, 2.5, 2.6</td>
<td>19</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2013</td>
<td></td>
<td>16.5</td>
<td>21</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2014</td>
<td></td>
<td>3.8</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2015</td>
<td></td>
<td>3.9</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2016</td>
<td></td>
<td>3.6</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2017</td>
<td></td>
<td>6.8</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2018</td>
<td></td>
<td>3.7</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2019</td>
<td></td>
<td>2.7</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2020</td>
<td></td>
<td>3.15</td>
<td>15</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2021</td>
<td></td>
<td>25, 7.7</td>
<td>21</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2022</td>
<td></td>
<td>2.1, <2</td>
<td>7</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>x34</td>
<td></td>
<td><2</td>
<td>1.7-3.2</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x4</td>
<td></td>
<td><2</td>
<td>1.2-2.5</td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td>x12</td>
<td></td>
<td><2</td>
<td>2.1-3.2</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>x3</td>
<td></td>
<td><2 - seedling</td>
<td>0.9-2.4</td>
</tr>
<tr>
<td>M. (johnsonii or brophi)</td>
<td>x7</td>
<td></td>
<td><2</td>
<td>1.5-2</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>x2</td>
<td></td>
<td><2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Year(s)</th>
<th>Seedling</th>
<th>Diameter</th>
<th>Health Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca hamulosa</td>
<td>2024</td>
<td></td>
<td>3.1, 2.6, 2.3, 2.5, 2.2, 3.5, 4.15, 3.45, 2.4, 4.2, 4.7, <2 x 5</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2025</td>
<td></td>
<td>2.8, 2.5, <2 x 5</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2026</td>
<td></td>
<td>3, 2.9, <2 x 20</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2027</td>
<td></td>
<td>6.7, 4.8, 2.3, 4.5, 5.9, 3.85, 4.7, 3.8, 4.5, 4.4, 4.1, 4.7, 4.5, 4.4</td>
<td>13</td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2028</td>
<td></td>
<td>4.7</td>
<td>11</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2029</td>
<td></td>
<td>2.7, 3.8, 2.45</td>
<td>17</td>
</tr>
</tbody>
</table>

2E
<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>Measurements</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca styrophylata</td>
<td>2030</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2031</td>
<td>4.2, 2.8, 2.4, 3.1, 3.5, 2.4, 2.8, <2 x 6, 2.8, 2.9, 3.2</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus occidentalis</td>
<td>2032</td>
<td>2.8, 2.3, 3.1, 2.5, 2.3, <2 x 3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2033</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2034</td>
<td>3.05, 2.8, 2.5, 4.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2035</td>
<td>3.4, <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2036</td>
<td>3.15, 2.7, 3.4, 3.7</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2037</td>
<td>2.9, 2.8</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2038</td>
<td>3.6, 2.9, 4.5, 4.3, 4.4, 2.8, 3.3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>2039</td>
<td>3.05, 3.8, 3.2, 3.3, <2, <2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca styrophylata</td>
<td>x96</td>
<td><2</td>
<td>1.5 - 3</td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x2</td>
<td><2</td>
<td>1.2</td>
</tr>
<tr>
<td>Melaleuca hamulosa</td>
<td>x1</td>
<td><2</td>
<td>2</td>
</tr>
<tr>
<td>Melaleuca uncinata</td>
<td>x2</td>
<td><2</td>
<td>3</td>
</tr>
</tbody>
</table>

3A Casuarina obsca 2040 7.8 19
Melaleuca styrophylata 2041 dead 19
Casuarina obsca 2042 7.2 19
Melaleuca styrophylata 2043 dead 19
Casuarina obsca 2044 2.5 19
Melaleuca styrophylata 2045 2.8 19
Melaleuca styrophylata 2046 2.5 19
Melaleuca styrophylata 2047 dead 19
Melaleuca styrophylata 2048 2.3 19
Melaleuca styrophylata 2049 3.7 19
Casuarina obsca 2050 5.8 19
Melaleuca styrophylata 2051 dead 19
Melaleuca styrophylata 2052 dead 19
Melaleuca styrophylata 2053 dead 19
Melaleuca styrophylata 2054 2.05 19
Melaleuca styrophylata 2055 2.7 19
Melaleuca hamulosa 2056 3.5, 3.7, 3.5, 3.2, 2.7, 3.2, 19
Melaleuca uncinata 2057 2.9, <2 x 6 19
Melaleuca styrophylata x124 <2 2.2 Stressed

3B *Melaleuca styrophylata* 2058 dead 19
Casuarina obsca 2059 3.9 19
Casuarina obsca 2060 7.1, 4.8 19
Casuarina obsca 2061 6.5 19
Melaleuca styrophylata 2062 2.6 19
Melaleuca styrophylata 2063 dead 19
Melaleuca styrophylata 2064 dead 19
Melaleuca styrophylata 2065 dead 19
Melaleuca styrophylata 2066 dead 19
Casuarina obsca 2067 8.95, 4 19
Casuarina obsca 2068 5.1 19
Melaleuca styrophylata 2069 dead 19
Casuarina obsca 2070 5.2 19
Casuarina obsca 2071 3.9 19
Casuarina obsca 2072 8 19
Casuarina obsca 2073 6 19
Melaleuca styrophylata 2074 dead 19
Casuarina obsca 2075 3.9 19
Casuarina obsca 2076 4.5 19
Casuarina obsca 2077 5.4 19
<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Seed No</th>
<th>Diameter (cm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casuarina obesa</td>
<td>2078</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2079</td>
<td>6.4</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2080</td>
<td>2.6</td>
<td>3</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2081</td>
<td>2.05, <2</td>
<td>13</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2082</td>
<td>2.8</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2083</td>
<td>2.4</td>
<td>9</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2084</td>
<td>7.75</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2085</td>
<td>5.4, 4.1</td>
<td>19</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2086</td>
<td>3.7</td>
<td>11</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2087</td>
<td>3.1, 2.8</td>
<td>11</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2088</td>
<td>3.7</td>
<td>19</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2089</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2090</td>
<td>7.2</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2091</td>
<td>3.5</td>
<td>11</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2092</td>
<td>3.4</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2093</td>
<td>2.3, <2</td>
<td>9</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2094</td>
<td>5.7</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2095</td>
<td>2.5</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2096</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2097</td>
<td>2.45</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2098</td>
<td>2.35</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2099</td>
<td>6.8</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2100</td>
<td>5.4</td>
<td>19</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2101</td>
<td>2.8, <2</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2102</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2103</td>
<td>3.6</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2104</td>
<td>7.6</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2105</td>
<td>2.9</td>
<td>11</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2106</td>
<td>4.35</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2107</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2108</td>
<td>3.2</td>
<td>13</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2109</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2110</td>
<td>5.5</td>
<td>17</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2111</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2112</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2113</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2114</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Melaleucahamulosa</td>
<td>x1</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>x62</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>x3</td>
<td><2</td>
<td></td>
</tr>
</tbody>
</table>

3 C

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Seed No</th>
<th>Diameter (cm)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casuarina obesa</td>
<td>2115</td>
<td>10, 10</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2116</td>
<td>9.6</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2117</td>
<td>9.9</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2118</td>
<td>8.55</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2119</td>
<td>7.2</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2120</td>
<td>5.2</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2121</td>
<td>5.3</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2122</td>
<td>3.4</td>
<td>15</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2123</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2124</td>
<td>6.9</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2125</td>
<td>7.2</td>
<td>17</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2126</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2127</td>
<td>8.1</td>
<td>19</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2128</td>
<td>2.6</td>
<td>9</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2129</td>
<td>6.9</td>
<td>15</td>
</tr>
<tr>
<td>Species</td>
<td>ID</td>
<td>Status</td>
<td>Other Information</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2130</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2131</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2132</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2133</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2134</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2135</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2136</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2137</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2138</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2139</td>
<td>3.2, 2.1</td>
<td>15</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2140</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2141</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2142</td>
<td>2.4, 2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2143</td>
<td>4.4, 3.2</td>
<td>11</td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2144</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2145</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2146</td>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2147</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2148</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2149</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2150</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2151</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2152</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2153</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2154</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2155</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2156</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2157</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2158</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2159</td>
<td>3.5, 3.2</td>
<td>Stressed</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2160</td>
<td>3.9, 3.9</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2161</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2162</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2163</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2164</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2165</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2166</td>
<td>7.5, 8</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2167</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2168</td>
<td>4.4, 3.6</td>
<td>3</td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2168</td>
<td>x15</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>x1</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2169</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2170</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2171</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2172</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2173</td>
<td>5.75</td>
<td></td>
</tr>
<tr>
<td>Melaleuca strobophylla</td>
<td>2174</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2175</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2176</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2177</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2178</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2179</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2180</td>
<td>7.4, 6.3</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2181</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>Casuarina obesa</td>
<td>2182</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table includes IDs, species, statuses, and other information. The status 'dead' indicates that the plant is deceased.
<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height(m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Eucalyptus leueastra</td>
<td>2216</td>
<td>26.2, 26.9, 11.05, 9.3, 9.55</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2215</td>
<td>14.95</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2217</td>
<td><2 x 3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2218</td>
<td>32.2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2219</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2220</td>
<td>15.15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2221</td>
<td>4.75</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2222</td>
<td>dead</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Allocasuarina huegelinea</td>
<td>2223</td>
<td>8.4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2224</td>
<td>7</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2225</td>
<td>3.5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2226</td>
<td>3.3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2227</td>
<td>10.05, 9.1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>Allocasuarina huegelinea</td>
<td>2228</td>
<td>12.8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allocasuarina huegelinea</td>
<td>2229</td>
<td>14.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2230</td>
<td>12.1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2231</td>
<td>6.2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>Acacia acuminata</td>
<td>2232</td>
<td>12.9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>Acacia acuminata</td>
<td>2233</td>
<td>3.8, 2.6, 6.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2234</td>
<td>9.7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td>Eucalyptus lophaebra</td>
<td>2235</td>
<td>29.8, 22.6, 27.8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2236</td>
<td>6.6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2237</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2238</td>
<td>15.35</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2239</td>
<td>7.1, 10.85, 7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2240</td>
<td>10.8, 10.05</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus lophaebra</td>
<td>2241</td>
<td>18.4, 9.8</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2242</td>
<td>14.3, 15.75</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>Acacia acuminata</td>
<td>2243</td>
<td>11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2244</td>
<td>10.25</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2245</td>
<td>3.25</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td>Acacia acuminata</td>
<td>2246</td>
<td>3.6, 4.6, 5.15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2247</td>
<td>17.6</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2 D</td>
<td>NO TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 E</td>
<td>Melaleuca halmburorum</td>
<td>2248</td>
<td>5.1, 3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2249</td>
<td>3.7, <2 x 5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2250</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2251</td>
<td>4.85</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obtusa</td>
<td>2252</td>
<td>33, 32.45</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2253</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2254</td>
<td>8.2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2255</td>
<td>3.3, 3.85, 3.2, 3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obtusa</td>
<td>2256</td>
<td>26.95, 18.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3 A</td>
<td>Melaleuca halmburorum</td>
<td>2257</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2258</td>
<td>3.35, 4.8, 5.45</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2259</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2260</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2261</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2262</td>
<td>8.2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2263</td>
<td>3.3, 3.85, 3.2, 3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obtusa</td>
<td>2264</td>
<td>26.95, 18.3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3 B</td>
<td>Casuarina obtusa</td>
<td>2265</td>
<td>22.05, 15.4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obtusa</td>
<td>2266</td>
<td>7.3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2267</td>
<td>6.7, 4.15, 4, <2, 2.2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2268</td>
<td>2.4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2269</td>
<td>3.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obtusa</td>
<td>2270</td>
<td>9.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2271</td>
<td>5, 3.4, 2.7, 2.6, 2.5, 2.5, <2 x 11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2272</td>
<td>10, 3.9, 7.4, 3.75, 2.9, <2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>Melaleuca halmburorum</td>
<td>2273</td>
<td>dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 D</td>
<td>Melaleuca halmburorum</td>
<td>2274</td>
<td>9.8, 7.1, 4.35, 6.35, 4.7, 3.8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca halmburorum</td>
<td>2275</td>
<td>4.55, 3.3, 5, 4.2, 3.7, 3.6, 3.4, 5.6,</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>Species</td>
<td>Tag #</td>
<td>DBH (cm) (2000)</td>
<td>Height(m)</td>
<td>Crown (2000)</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 A</td>
<td>Acacia acuminata</td>
<td>2292</td>
<td><2, <2, <2, <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2291</td>
<td><2, <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2290</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2299</td>
<td><2, <2, <2, <2, <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2288</td>
<td>3.3, <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2332</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>0.3 - 0.6</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 B</td>
<td>Acacia acuminata</td>
<td>2293</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>x3</td>
<td><2 - seedlings</td>
<td>0.5 - 1.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 C</td>
<td>Eucalyptus laeophleba</td>
<td>2294</td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2333</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>x8</td>
<td><2 - seedlings</td>
<td>0.9 - 1.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>1 D</td>
<td>Casuarina obesa</td>
<td>2295</td>
<td>26.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus laeophleba</td>
<td>2296</td>
<td>31.15, 41.5, 32.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>Acacia acuminata</td>
<td>2334</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 A</td>
<td>Acacia acuminata</td>
<td>2297</td>
<td>25.9, 9.2, 7.5, 4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2298</td>
<td>13.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2299</td>
<td>5.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2300</td>
<td>10.6, 8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>x4</td>
<td><2 - seedlings</td>
<td>0.9 - 1.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>2 B</td>
<td>Acacia acuminata</td>
<td>2301</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2302</td>
<td>2.5, <2, <2, <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2303</td>
<td>5.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td>Eucalyptus laeophleba</td>
<td>2304</td>
<td>22.55, 17.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eucalyptus laeophleba</td>
<td>2305</td>
<td>32.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acacia acuminata</td>
<td>2306</td>
<td>2.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casuarina obesa</td>
<td>2307</td>
<td>25.85, 28.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COYRECUP - Transect 4

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) (2000)</th>
<th>Height (m)</th>
<th>Crown (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>Melaleuca adenostyla</td>
<td>2336</td>
<td>3, 3.6, 3.35, 2.9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca adenostyla</td>
<td>2337</td>
<td>Multiple <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santalum acuminatum</td>
<td>2338</td>
<td>9.8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca adenostyla</td>
<td>2339</td>
<td>3.15</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca laterijlorum</td>
<td>2340</td>
<td>15.5 - Basal</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca laterijlorum</td>
<td>2342</td>
<td>21 - Basal</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>2343</td>
<td><2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca laterijlorum</td>
<td>2344</td>
<td>17.5 - Basal</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca laterijlorum</td>
<td>2345</td>
<td>25 - Basal</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>Melaleuca acuminata</td>
<td>2345</td>
<td><2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>2346</td>
<td>3.15, 3.8, <2, <2, <2, <2, <2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>2347</td>
<td>2.9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>2348</td>
<td>dead</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melaleuca acuminata</td>
<td>2349</td>
<td>4.1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Range</td>
<td>Column 1</td>
<td>Column 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td><2, <2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>4.4, 2.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>Multiple <2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>2.6, <2, <2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>2.2, 2.2, 2.1, <2 x 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td><2 x 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca acuminata</td>
<td></td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td></td>
<td>31.1 - Basal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column 1

- **1 C**
 - Melaleuca acuminata: 3.9, 2.9, 2.7, 2.4, 2.9, 2.5, 2.75
 - Melaleuca acuminata: 7.2
 - Melaleuca acuminata: 3.7, <2, <2
 - Melaleuca acuminata: 4.5, 2.2, 4.5, <2 x 8
 - Melaleuca acuminata: 3.4
 - Melaleuca acuminata: 3.6
 - Melaleuca acuminata: 3.8, multiple <2
 - Eucalyptus laxophleba: 7.8, 8.5

- **1 D**
 - Melaleuca acuminata: Multiple <2
 - Melaleuca acuminata: Multiple <2

- **1 E**
 - Eucalyptus laxophleba: 11.8, 10
 - Eucalyptus laxophleba: 14.3, 15.5, 21.15
 - Eucalyptus spathulata: 7.55, 6.8

- **2 A**
 - Eucalyptus laxophleba: 24.3
 - Melaleuca acuminata: 3.1, multiple <2
 - Melaleuca acuminata: 2.8, 3.45, 2.8, 4.2, 2.9, 4.15

- **2 B**
 - Eucalyptus laxophleba: 18.9, 16.2, 11.7
 - Eucalyptus laxophleba: 15.5, 11.2
 - Eucalyptus laxophleba: 35, 12.9, 16.6
 - Eucalyptus laxophleba: 7.65, 14.7
 - Eucalyptus laxophleba: 7.2

- **2 C**
 - Eucalyptus laxophleba: 10.2, 9.15, 10.45, 9.9, 8.5, 19
 - Eucalyptus laxophleba: 19

- **2 D**
 - Melaleuca acuminata: 3.3, 3.8, 2.8
 - Melaleuca acuminata: 2.8, 2.1, 2.2
 - Melaleuca acuminata: 2.2, 2.45, <2 x 8
 - Melaleuca acuminata: <2 x 6
 - Melaleuca acuminata: Multiple <2
 - Eucalyptus laxophleba: 5.95
 - Melaleuca acuminata: 3.4, <2
 - Melaleuca acuminata: 4, 3.2, 2.1
 - Melaleuca acuminata: 3.1, 3.4, 2.45
 - Melaleuca acuminata: 4.15, 2.85
 - Melaleuca acuminata: 3.2, 2.95, 2.75, <2 x 4
 - Melaleuca acuminata: 13.8 - Basal
Table 1: Me/Aleuca uncinata and Me/Aleuca acuminata

<table>
<thead>
<tr>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) 2000</th>
<th>Height (m)</th>
<th>Crown 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me/Aleuca uncinata</td>
<td>2399</td>
<td>13.8 - Basal</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2400</td>
<td>8.6, 4.8, 6, 4.35, 3.4, 2.8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2401</td>
<td>2.3, 3.1, 2.1, 2.75, 2.2, 2.45</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2402</td>
<td>3, <2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2403</td>
<td>2.95, 2.45, 2.65</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2404</td>
<td><2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2405</td>
<td>2.7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2406</td>
<td>3, 2.2, 2.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2407</td>
<td>2.2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2408</td>
<td>2.6, <2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2409</td>
<td>2.8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2410</td>
<td>3.1, 3.4, 2.8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2411</td>
<td>2.25, <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2412</td>
<td>2.25, multiple <2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2413</td>
<td>2.4, 2.1, 2.1, <2 x 7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2414</td>
<td>2.8, <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2415</td>
<td>3.5, 2.5, <2, <2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2416</td>
<td>4.15</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2417</td>
<td>2.5, <2, 2.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Me/Aleuca acuminata</td>
<td>2418</td>
<td>4.2, 2.55, 3.1</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: COYRECUP - Transect 5

<table>
<thead>
<tr>
<th>Plot</th>
<th>Species</th>
<th>Tag #</th>
<th>DBH (cm) 2000</th>
<th>Height (m)</th>
<th>Crown 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Me/Aleuca adenostyla</td>
<td>2419</td>
<td>9.05</td>
<td>1.6 - 2.4</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>x2</td>
<td><2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>x5</td>
<td><2</td>
<td>2 - 2.4</td>
<td>Healthy</td>
</tr>
<tr>
<td>1B</td>
<td>Salignum acuminatum</td>
<td>2420</td>
<td>8.5, 17.7, 6.6, 10.9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2421</td>
<td>10.6, 10.1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>x6</td>
<td><2</td>
<td>1.5 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>x2</td>
<td><2</td>
<td>2</td>
<td>Healthy</td>
</tr>
<tr>
<td>1C</td>
<td>Me/Aleuca adenostyla</td>
<td>2422</td>
<td>8.4, 8.8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2423</td>
<td>dense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2424</td>
<td>5.2, 4.6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>x1</td>
<td><2</td>
<td>1.6</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>x2</td>
<td><2</td>
<td>1.6</td>
<td>Healthy</td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>x2</td>
<td><2</td>
<td>0.5 - 2.5</td>
<td>Healthy</td>
</tr>
<tr>
<td>1D</td>
<td>Me/Aleuca adenostyla</td>
<td>2425</td>
<td>9.8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2426</td>
<td>7.9, 7.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2427</td>
<td>8.3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2428</td>
<td>7.8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2429</td>
<td>7.95, 4.9, 7.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>x1</td>
<td><2</td>
<td>2.8</td>
<td>Healthy</td>
</tr>
<tr>
<td>1E</td>
<td>Me/Aleuca adenostyla</td>
<td>2430</td>
<td>6.4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2431</td>
<td>9.5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca latiflora</td>
<td>2432</td>
<td>17.1, 12.8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2433</td>
<td>6.3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2434</td>
<td>5, 2.65, 6.3, 6.6, 5.9, 6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me/Aleuca adenostyla</td>
<td>2435</td>
<td>5.4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Value</td>
<td>Standard Deviation</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca iseriflora</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>3.5, 4.95, 7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>5, 3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.9, 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x1</td>
<td><2</td>
<td>Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x4</td>
<td><2</td>
<td>0.4 - 0.8</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.3, 6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>5.9, 3.2, 5.1, 8, 7.1, 6.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>6.5, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>8.9, 4.8, 7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>8.75, 4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x1</td>
<td><2</td>
<td>2 - 2.5</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>12.7, 9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>17.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>10.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca lateriflora</td>
<td>x13</td>
<td><2</td>
<td>1.6 - 2.5</td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melaleuca adenosty/o</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>