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Abstract: Buried pipeline systems play a vital role in energy storage and transportation, especially
for fluid energies like water and gas. The ability to locate buried pipes is of great importance since it
is fundamental for leakage detection, pipeline maintenance, and pipeline repair. The vibro-acoustic
locating method, as one of the most effective detection technologies, has been studied by many
researchers. However, previous studies have mainly focused on vibro-acoustic propagation in buried
water pipes. Limited research has been conducted on buried gas pipes. In this paper, the behavior
of gas-dominated wave motion will be investigated and compared against water-dominated wave
motion by adapting an established analytical model of axisymmetric wave motion in buried fluid-filled
pipes. Furthermore, displacement profiles in spatial domain resulting from gas-dominated wave in
buried gas pipeline systems will be analyzed, and the effects of pipe material, soil property, as well
as mode wave type will be discussed in detail. An effective radiation coefficient (ERC) is proposed
to measure the effective radiation ability of gas-dominated wave and water-dominated wave. It is
observed that the gas-dominated wave in gas pipes cannot radiate into surrounded soil as effectively
as water-dominated wave in water pipes because of the weak coupling between gas and pipe-soil.
In this case, gas-dominated wave may not be the best choice as the target wave for locating buried gas
pipes. Therefore, the soil displacements result from the shell-dominated wave are also investigated
and compared with those from gas-dominated wave. The results show that for buried gas pipes,
the soil displacements due to radiation of shell-dominated wave are stronger than gas-dominated
wave, which differs from buried water pipe. Hence, an effectively exciting shell-dominated wave
is beneficial for generating stronger vibration signals and obtaining the location information. The
findings of this study provide theoretical insight for optimizing the current vibro-acoustic method
when locating buried gas pipes.

Keywords: gas pipe locating; vibro-acoustic method; axisymmetric waves; displacements profiles

1. Introduction

Pipeline systems are one of the most effective means for storing and transporting fluid energies,
and it has been the subject of numerous studies [1–3]. Leakage in these pipeline systems, which are
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often buried under ground, can occur from time to time, leading to economic losses and environmental
problems [4,5]. Identifying the location of pipelines of interest is of great significance as it is
the prerequisite of leakage detection and condition assessment. Unfortunately, records of the
location of these underground utilities are often inaccurate and incomplete. To address this problem,
the vibro-acoustic technique has been developed and has been shown to be promising in locating
buried plastic water pipes [6]. By applying contact or non-contact excitation to the buried pipe, the pipe
location can be detected through extracting the phase of the surface vibration using surface mounted
geophones. Such a technique has been proven to be extremely robust [7].

In addition to being employed for locating buried pipes, vibro-acoustic signals have been widely
adopted in order to achieve leak detection [8,9]. Numerous studies focusing on wave propagation on
pipe structure have been conducted for many years. Gazis has investigated the harmonic waves in
hollow circular cylinders of infinite extent in three dimensions and obtained a characteristic equation,
thereby providing an analytical foundation [10] as well as numerical results [11]. Fuller and Fahy [12]
have studied the dispersion characteristics and energy distributions of free waves in fluid-filled thin
shell, where the concept of fluid loading term was first proposed. Based on this, the vibration and
radiation characteristics of the shell excited by an internal monopole acoustic source have also been
analyzed [13,14]. Pinnington and Briscoe [15] found that well below the pipe ring frequency (usually
at least 1000 Hz) four wave types make contributions to the most energy transmission: these are the
three axisymmetric waves, with n = 0, and s = 1, 2, and 0, corresponding to a fluid-dominated wave,
shell-dominated wave, and torsional wave, respectively. (In this paper, to distinguish different scenarios,
s = 1 wave is straightforwardly named in terms of the type of inner fluid, like a water-dominated wave
and gas-dominated wave.) The fourth, the n = 1 wave, relates to beam bending. The pipe-structure
models mentioned above are mainly limited in the circular cylinder or shell surrounded by vacuum,
where recently, most efforts have focused on the fluid-filled pipes surrounded by some medium which
is the most common situation in practice.

Sinha et al. have investigated dispersion curves and displacement and stress distributions along
the radial direction of a liquid-filled cylinder immersed in liquid [16] and conducted experiments to
verify the theory [17]. Long et al. have presented possible axisymmetric wave modes propagating in
buried iron pipes filled with water [18], as well as the attenuation behaviors of the fundamental mode
waves [19]. Muggleton et al. [20] have developed an analytical model and derived equations to predict
the wavenumber of two wave types, s = 1 (fluid-dominated) and s = 2 (shell-dominated) wave, in a
fluid-filled pipe surrounded by an infinite elastic medium. However, the outer medium was treated as
fluid which can sustain both compressional and shear wave, and the shear coupling between the pipe
and the surrounding soil was not properly accounted for. The modal was improved by including shear
coupling for a buried fluid-fill pipe at a lubricated pipe/soil interface [21]. Gao et al. [22] proposed
a simplified analytical model to predict the dispersion relationships for fluid-dominated wave and
investigated structural and fluid motion [23] in buried fluid-fill pipes, which provides theoretical
support for axisymmetric wave propagation in buried fluid-filled pipe systems with perfect bonding
in pipe-soil interface. For the water pipe, where the inner fluid and the pipe wall are well coupled,
the s = 1 wave (water-dominated wave) will be the predominant energy carrier [15] and it can radiate
into surrounding soil while propagating down the pipe. Therefore, s = 1 wave is always the target wave
of vibro-acoustic method in locating buried water pipes and different excitation methods have been
specifically designed to determine the best way to excite this wave type [24]. By effectively exciting the
water-dominated wave and analyzing the ground surface vibration resulting from this mode wave,
the location of buried water pipe can be determined [25]. Despite a great deal of research having been
carried out on buried pipe systems, the cases are only restricted to water pipes, while limited work
has been conducted on buried gas pipes. The situation may be different for buried gas pipes due
to the weak coupling between gas and the pipe wall. Jette and Parker [26] investigated the surface
displacements resulting from the acoustic wave propagation within a buried gas pipe, which provided
a theoretical frame to the study of wave field in gas pipe systems. Li et al. [27] have investigated
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the leakage acoustic vibration of gas pipes in air, indicating that the s = 2 wave (shell-dominated
wave) is the prominent component of the gas leakage-induced acoustic wave, which is contrary to
the conclusion for water pipes in [15,23]. Therefore, understanding acoustic propagation behavior
of buried gas pipes and distinguishing the differences from buried water pipes are both significantly
important for locating pipelines and detecting leakage.

In this paper, axisymmetric waves and displacement profiles in radial direction for buried gas
pipe systems are studied with a comparison against water pipes. The investigation starts with the
fundamental theory of axisymmetric wave motion in a buried pipe system in Section 2. This is based on a
simplified analytical model of axisymmetric wave motion in buried fluid-filled pipes [22]. The numerical
results are presented in Section 3. Firstly, the dispersion characteristics of gas-dominated wave for
buried gas pipes are analyzed and compared with water-dominated wave in Section 3.1. Following
this, in Section 3.2, the displacement distributions resulting from gas-dominated wave of buried
gas pipe systems are investigated, and compared against those of buried water pipes. Furthermore,
in Section 3.3, the displacement profiles resulting from shell-dominated wave (termed s = 2) in buried
gas pipes are also investigated to reveal another wave motion shape of soil. The limitations and
suggestion for optimizing the current vibro-acoustic method are included in Section 4. Finally, some
conclusions are drawn in Section 5.

2. Theory

2.1. Model Introduction and Nomenclature

The three dimensional coordinated system of a fluid-filled (gas or water) pipe surrounded by
infinite soil is depicted in Figure 1. The three directions of cylindrical coordinate are shown as x (axial),
r (radial), and θ (circumferential). Since only axisymmetric wave motion is taken into consideration,
only the variations with respect to x (axial) and r (radial) exist.

The fluid inside the pipe could be gas or water. The pressure of the fluid is represented by pf.
The normal stress and shear stress from soil loading can be expressed as σrr and σrx, respectively.
The displacements of pipe are represented by up and wp in axial and radial direction, correspondingly.
Likewise, the displacement of fluid and surrounded soil are represented by uf, wf and um, wm,
respectively. The pipe has a radius a = 0.08 m and a wall thickness h = 0.01 m, and they satisfy h/a� 1.
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Figure 1. The coordinate system for a fluid-filled pipe surrounded by infinite medium.

For each s wave, the wave number is expressed as ks. Parameters related to the pipe are described
as ρp, Ep, and σp, denoting density, Young’s modulus, and Poisson’s ratio, respectively. The shell

compressional wave speed is vL =
√

Ep/ρp
(
1− σ2

p

)
and the corresponding wave number is kL = ω/vL,

where ω is the angle frequency. Ω is the normalized ring frequency, which equals to akL
2.

For a fluid-filled (gas or water) pipe, ρf and vf are density and free field wave speed of the fluid.

Axial wave number is kf =
ω
vf

. The radial wave numbers are kr
fs =

√
k2

f − k2
s .

Parameters related to the external medium are described as ρm, µm, λm corresponding to
density, shear modulus and Lamé elastic constant, respectively. The propagation wave speeds are
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vd =
√
(λm + 2µm)/ρm for P-wave and vr =

√
(λm + 2µm)/ρm for S-wave. The axial wave numbers

are kd = ω/vd and kr = ω/vr. The radial wave numbers are kr
ds =

√
k2

d − k2
s for P-wave and

kr
rs =

√
k2

r − k2
s for S-wave.

2.2. The Expressions of Axisymmetric Waves

Based on the simplified dispersion relationship of axisymmetric wave in buried fluid-filled
pipes [22], the expression of s = 1 wave is reproduced here for completeness.

For s = 1 wave, according to the dispersion equation in Appendix A and assuming that the wave
speed of gas-dominated wave is much smaller than the wave speed of shell compressional speed, i.e.,
k1 << kL, the simplified characteristic equation for gas-dominated wave is given by [22]:

k2
1 = k2

f

(
1 +

β

1−Ω2 + α

)
(1)

where α = −SL22 −
(σp−iSL12/k1a)

2

1+SL11/(k1a)2 and β = 2c2
f ρfa

(
1− σ2

p

)
/Eph. The expression of SL can be found in

Appendix A. The attenuations are defined by the loss in dB per unit propagation distance (measured
in pipe radii) by [22]:

Loss(dB/unit distance a) = −20
Im(ksa)
ln(10)

(2)

2.3. Equations of the Radial Displacement Distribution in Radial Direction

For the buried pipe system, the pressure of the inner fluid can be measured more easily compared
to other parameters. Therefore, the amplitude of fluid pressure at center of the system is selected to be
the normalization. Setting r = 0 in Equation (A3), it renders:

pfs(0) = Pfsei(ωt−ksx) (3)

In this way, Pfs is the normalization, where all the displacements will be normalized by it.
For the fluid inside the pipe, substitute Equation (A3) into Equation (A4), where the fluid

displacements can be expressed as:

wfs = −
kr

fs J1
(
kr

fsr
)

ρfω2 Pfsei(ωt−ksx), ufs = −
iks J0

(
kr

fsr
)

ρfω2 Pfsei(ωt−ksx) (4)

Therefore, the normalized amplitudes of in-pipe gas displacements are:

W̃fs = −
kr

fs J1
(
kr

fsr
)

ρfω2 , Ũ f s = −
iks J0

(
kr

fsr
)

ρfω2 (5)

For the displacement of pipe wall, rearrange the order of Equation (A11), given that [23]:

Wps = ΥsPfs (6)

From Equation (A18), there is:
Ups = χsWps (7)

where χs =
1−Ω2

−FL−SL22
iσpksa+SL21

[23]. Therefore, the normalized amplitudes of radial displacement of pipe
wall are:

W̃ps = Υs, Ũps = χsΥs (8)
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Eliminating the term ei(ωt−ksx) in Equation (A7), the amplitudes of soil displacements are given as:(
Ums

Wms

)
= T1

(
Ams

Bms

)
(9)

The terms related to Ams and Bms represent the contributions from compressional wave and
shear wave in soil, respectively. The terms related to Ams and Bms represent the contributions from
compressional wave and shear wave in soil, respectively.

Equation (A15) and Equations (6) and (7) yield:(
Ams

Bms

)
=

[
N11 N12

N21 N22

](
ΥsPfs

χsΥsPfs

)
(10)

Therefore, by combining Equations (9) and (10), the normalized displacement of soil can be
expressed as:  Ũms

W̃ms

 = T1

[
N11 N12

N21 N22

](
Υs

χsΥs

)
(11)

3. Numerical Results and Analysis

This section presents the numerical results and analysis of the dispersion behavior of axisymmetric
waves and displacement radial profiles of buried gas pipes. The property of gas is set the same as
air for simplicity. Two different pipe materials are considered, namely, polyvinyl chloride (PVC) and
cast iron. Furthermore, two different soil types are included in the study: soil A represents a typical
sandy soil and soil B represents a typical clay soil. The numerical results of buried water pipes are
also presented for comparative purposes. The parameters used are listed in Table 1, which provide
consistency with the studies conducted in references [22,23].

Table 1. Parameters used for numerical simulation. PVC: polyvinyl chloride.

Properties Cast Iron PVC Soil A Soil B Gas Water

Density (kg/m3) 7100 2000 2000 2000 1.290 1000
Young’s modulus (N/m2) 1.000 × 1011 5.000 × 109 - - - -
Poisson’s ratio 0.290 0.400 - - - -
Bulk’s modulus (N/m2) - - 5.300 × 107 4.500 × 109 1.490 × 105 2.250 × 109

Shear modulus (N/m2) - - 2.000 × 107 1.800 × 108 - -
Material loss factor 0.001 0.065 - - - -
Shell compressional wave
speed (m/s) 3922 1725 - - - -

Compressional (P) wave
speed (m/s) - - 200 1540 340 1500

Shear (S) wave speed (m/s) - - 100 300 - -

3.1. Characteristics of the s = 1 Wave in Buried Gas Pipes versus Buried Water Pipes

The dispersion curve and attenuation of gas-dominated wave for buried gas pipes are illustrated
in Figures 2a and 3a, with those of the water pipes for comparison shown in Figures 2b and 3b.

For water pipes, as shown in Figure 2b, both pipe material and soil property have impacts on
the speed of water-dominated wave, even if it can be approximately treated as non-dispersive over
the frequency range of interest for fixed pipe material and soil. The impact of soil property is very
slight for cast iron pipes and discernable on PVC pipes. This can be revealed in plots where the
wave speeds almost remain the same for cast iron pipes buried in different soil types, whereas slight
variation appears for PVC pipes. However, the impact of pipe material is prominent. The change of
pipe material causes a huge variation, demonstrated by the speeds of water-dominated waves for
PVC water pipes being significantly smaller than cast iron pipes. This occurs because the inner fluid
directly contacts with the pipe wall. In addition, the acoustic impedance difference between water
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and PVC is relatively small, leading to better coupling between the pipe wall and inner fluid for PVC
pipe. In this case, the soil property could effectively impact the behavior of the s = 1 wave. For cast
iron pipes, the great disparity of acoustic impedance between cast iron and the water makes the pipe
wall a barrier against the soil, implying that the soil property hardly has any influence on the s = 1
wave. This phenomenon is verified in Figure 3b where attenuation of the water-dominated wave is
displayed, shown with little variation for cast iron pipe in different soil types, whereas the variation is
discernable for PVC pipes.

The above phenomenon is also reflected in Figure 3a. However, the characteristics of the s = 1
wave are quite different from those of a water pipe when looking at the magnitude scale of variation.
The speed differences of the four buried gas pipes shown in Figure 3a are extremely small, less than
0.015 m/s, and the speed values are around 339 m/s. This means that the pipe material and soil type
almost have no effect on the speed of gas-dominated wave, where it propagates at a speed very close
to the air in the free field (340 m/s). The behaviors of gas-dominated wave can be explained by the
huge acoustic impedance difference between gas and the pipe material, which is so large that the
coupling between gas and pipe is extremely weak. Therefore, in general, inner gas and pipe-soil can be
approximately regarded as separated, implying that the gas-dominated wave is relatively dependent
and hardly affected by pipe and soil.
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The attenuations of gas-dominated waves and water-dominated waves in different cases follow
similar patterns as depicted in Figure 3a,b. The attenuation of PVC water pipe is much greater than for
the cast iron pipe due to the smaller acoustic impedance difference between PVC and in-pipe fluid.
This will generate better coupling and consequently, the s = 1 wave can radiate more easily outward
to the pipe and the surrounded soil, leading to a greater attenuation during propagation in an axial
direction. However, when looking at the magnitude scale, it is evident that the attenuation for gas pipe
is at much lower level than water pipe. This is also because of the weak coupling between inner gas
and pipe-soil. As mentioned previously, good coupling will result in a large amount of radiation into
soil accompanying high level of attenuation in axial direction, which implies that the gas-dominated
wave is mainly trapped inside the pipe and may not radiate effectively into soil as it propagates down
the pipe.

An earlier study has demonstrated a vibro-acoustic technique for locating buried pipes, where the
ground vibration due to the radiation of the s = 1 wave is employed to identify the run of a buried
water pipe [25]. This detection method has been successful in locating buried water pipes, while the
feasibility of locating buried gas pipe remains unknown based on the different behaviors between
gas-dominated and water-dominated wave. To clarify this question, the effective radiation ability of
gas-dominated wave will be investigated and discussed in detail in Section 3.2.

3.2. Displacement Profiles from the s = 1 Wave (Gas-Dominated Wave) for Buried Gas Pipe: With a Buried
Water Pipe as a Reference

The cross section of buried fluid-filled pipe shown in Figure 1, is further depicted in Figure 4,
rotated by 90◦. The central axis is shown as a black dashed line with a dashed blue line depicting the
equivalent ground surface away from pipe wall around 1 m, corresponding to the standard burial
depth of most pipelines. In this way, the x-axes of displacement profiles displayed in Figures 5
and 6 corresponds to the radial direction in Figure 4, where y-axes can straightforwardly present the
magnitude scale.
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.

To study the effect of pipe material and soil type on the vibration behavior of buried gas piping
system, the displacement profiles of four cases are illustrated in Figure 5a,b and Figure 6a,b, including
cast iron gas pipe buried in soil A, PVC gas pipe buried in soil A, cast iron gas pipe buried in soil B and
PVC gas pipe buried in soil B. For comparison, corresponding water pipes of the same pipe material
buried in the same soil type are displayed in Figure 5c,d and Figure 6c,d. In each graph, the overall
axial displacement as well as the contributions from P wave and S wave are plotted. The pattern of
contributions from P and S wave to radial displacement is similar. Therefore, for radial displacement,
only overall value is displayed for clarity.
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The displacements resulting from s = 1 wave are characterized by the great magnitude of axial
displacement in fluid inside the pipe. This is exactly why the s = 1 wave is called the fluid-dominated
wave. Moreover, the displacements in pipe and surrounding soil reveal that s = 1 wave is a waveguide
spreading through the entire buried pipe structure, including the inner fluid, pipe and the outer soil.
However, the wave dampens during the radiation away from the in-pipe fluid as the overall amplitude
of soil displacement decreases with increasing distance in radial direction, even if there are fluctuations
in some cases.

By comparing the different cases, some analysis can be made, which is detailed below.

3.2.1. The Effect from Pipe Material

Comparing Figure 5a,b as well as Figure 6a,b, it is evident that the displacements of buried PVC
water systems are at a higher magnitude level than buried cast iron water pipes, in both an axial and
radial direction. This finding can also be applied to buried gas pipe when comparing Figure 5c,d
as well as Figure 6c,d. The only difference is that the axial displacements of inner fluid vary for
different materials in water pipes, whereas they remain the same in gas pipes. This phenomenon
corresponds to the huge variation of the wave speed of water-dominated wave between PVC and cast
iron pipe, with almost unchanged wave speed of gas-dominated waves, which has been discussed in
Section 3.1. The greater amplitudes of soil displacements for PVC pipes indicate that the PVC pipes
are easier to excite than cast iron pipes because of the less pipe wall mass and less inertia. Therefore,
the vibro-acoustic method is more feasible for locating buried PVC pipes.
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3.2.2. The Effect from Soil Property

The effect of soil property on the vibration of buried pipe systems mainly depends on the
relationship between the s = 1 wave speed and the speed of bulk waves in soil. According to Snell’s
law, for the mode wave whose phase velocity is above bulk wave velocity of soil, it couples energy
into the surrounding soil layer as propagating down the pipe and creates a leaky bulk wave at a
characteristic angle [28]. For the pipes buried in soil A, as displayed in Figure 5a–d, the speed of s = 1
waves (around 339 m/s for gas pipes, around 1300 m/s for cast iron water pipes, 500–700 m/s for PVC
water pipes) are greater than both compressional and shear wave velocity of soil. Therefore, both bulk
waves make contributions to radiation, which is characterized by the synchronized damping of P wave
and S wave in radial direction. The interfering effect of two waves, reflected as the oscillatory nature of
the displacement in soil, is especially distinctive in Figure 5b,d, which confirms both contributions.

For the mode wave whose phase velocity falls below the bulk velocity of the surrounding medium,
the characteristic angle is imaginary [28]. Instead of creating a wave that propagates away from
the pipe, the energy is trapped inside the pipe and the soil displacement dampens rapidly in radial
direction [18]. This is exactly the cases with pipes buried in soil B where the s = 1 wave speed is
lower than the compressional wave speed of soil, as displayed in Figure 6a–d. Rather than damping
parasynchronously with shear wave, the contribution from compressional waves decrease rapidly
away from the pipe wall, which is more evident for buried gas pipe shown in Figure 6c,d. In these
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cases, the displacements of soil are only from the contribution due to shear waves so that the interfering
effect is weak. As a result, the fluctuations in displacement of soil are not apparent.

3.2.3. The Difference between Gas Pipes and Water Pipes

By comparing the displacement shape of the gas pipe in Figure 5c to that of the water pipe in
Figure 5a, it can be observed that the displacement difference between in-pipe fluid and surrounding
soil in buried gas pipe systems is much greater than water pipe systems. This is also apparent
when looking at Figure 5b,d, and Figure 6. To assess these differences in a straightforward manner,
the effective radiation coefficient (ERC) is proposed, which is defined as the ratio of radial displacement
of outer soil to that of in-pipe fluid at the center of the axis, given by:

Effective Radiation Coefficient (ERC) =
Ũms

Ũfs|r = 0
(12)

The characteristics of ERC have been investigated for 8 cases, corresponding to Figures 5a–d and
6a–d. The results show that for fixed in-pipe fluid and pipe material, the soil type has a slight effect
on the magnitude of the ERC. Thus, for clarity, only ERCs of 4 cases where pipes are buried in soil B
are displayed.

The value of ERC in spatial domain is illustrated in Figure 7a, with x-axes corresponding to
the radial distance away from pipe, where the amplitude decreases with the distance increasing.
It is apparent the ERC in buried gas pipe systems are much lower than those in buried water pipe
systems. As discussed earlier, the acoustic impedance difference between gas and pipe material is
much greater than that between water and pipe material, making the inner gas relatively separated
and uncoupled with pipe and soil. As a result, gas-dominated wave may not radiate through pipe
wall into surrounding soil as effectively as water-dominated wave. For a fixed fluid, it is observed that
the amplitude of ERC in buried PVC pipe is greater than cast iron pipe. Again, this results from the
less acoustic impedance gap between fluid and PVC and surrounding soil, which makes the buried
PVC pipe structure a better coupling system.
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For a fixed location at equivalent ground surface, i.e., r = 1.09, the coefficient in frequency domain
is shown in Figure 7b. The general pattern is almost the same as that shown in Figure 7a, except that
the amplitude increases with increasing frequency. This implies that the s = 1 wave can radiate into soil
more effectively at higher frequency, which may be beneficial to the application of the vibro-acoustic
method for locating buried pipe. Further discussion will be described in Section 4.
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In summary, if s = 1 wave is chosen as a target wave, the applicability of the vibro-acoustic method
in locating buried pipes ranked from high to low is: PVC water pipe, cast iron water pipe, PVC gas
pipe, and then cast iron gas pipe. In this way, s = 1 wave may not be the best choice as target wave for
locating gas pipelines. Therefore, the displacement profiles resulting from s = 2 wave in buried gas
pipe systems are further investigated.

3.3. Displacement Profiles from s = 2 (Shell-Dominated Wave) for Buried Gas Pipes

According to previous studies, the shell-dominated wave is largely unaffected by either the
contained fluid or the surrounding medium [29]. This has been verified in reference [23] where the
characteristic of shell-dominated wave only depends on the pipe material. Additionally, the dispersion
curves based on wave guide theory for buried water pipes [18] and gas pipes [27] illustrate that the
mode wave L(0,1) corresponding to the s = 2 wave is non-dispersive at a low frequency range, which
is consistent with the results shown in reference [23]. Hence, the data of the s = 2 wave provided in
reference [23] can be employed to calculate the displacement distribution in buried gas pipe system
resulting from shell-dominated wave. Accordingly, the displacement profiles of buried cast iron gas
pipe and PVC gas pipe in soil B are presented in Figure 8a,b, respectively.
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The results show that unlike the s = 1 wave, the displacements due to s = 2 waves are characterized
by great vibration of pipe wall. This is the reason why the s = 2 wave is called the shell-dominated
wave. Another difference from the s = 1 wave is speed, where the s = 2 wave spreads at around
1725 m/s for buried PVC pipe and around 3722 m/s for buried cast iron pipe [23]. Both of those are
above the speed of bulk waves of soil B, which differs from an s = 1 wave whose speed falls below the
P wave in soil B. Therefore, the contributions from P-wave and S-wave dampen synchronously in a
radial direction, which means the shell-dominated wave can radiate compressional waves as well as
shear waves. This also proves that a shell-dominated wave is a waveguide spreading across the entire
buried pipe system, exactly like the s = 1 wave.

Since the amplitudes of displacements resulting from the s = 1 wave and the s = 2 wave are
normalized by Pf1 and Pf2, respectively, the magnitudes cannot be directly compared. However,
the relationship between Pf1 and Pf2 is provided in reference [23] as:∣∣∣∣∣Pf1

Pf2

∣∣∣∣∣2 =
aRe(k1)Re(k2)

2hρpρfω
4
∣∣∣χ2Υ2

∣∣∣2 (13)
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In this way, the amplitudes of displacements can be normalized by the same normalization Pf1.
The calculated ratio of Pf1 to Pf2 is 0.002993 for buried PVC gas pipe in soil B, and 0.0003969 for cast
iron pipe. The re-normalized displacements resulting from s = 2 waves are presented in Figure 9, with
those due to s = 1 wave displayed for comparison.
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The fluctuations that appear in s = 2 wave-induced displacements confirm the interfering effect
from P wave and S wave and effective radiation of both waves. In contrast, the displacements resulting
from s = 1 wave are quite smooth since only shear waves make contributions. In addition, it is apparent
that soil displacements resulting from the s = 2 wave have a higher magnitude as compared to the
s = 1 wave, in both buried cast iron gas pipe and PVC gas pipe. This means shell-dominated wave can
radiate outward more effectively than gas-dominated wave in buried gas pipe systems.

Previous studies have chosen the s = 1 wave as the target wave in the vibro-acoustic method for
locating buried water pipe and focused on determining the best excitation method to generate the
s = 1 wave [24]. However, this may not work with buried gas pipes. The study in this paper shows
that for buried gas pipe, shell-dominated can result in stronger wave motion in surrounding soil than
gas-dominated wave, which provides stronger signals used for analyzing and identifying the pipe
locations. Therefore, determining the fittest excitation method to generate the s = 2 wave, instead of
the s = 1 wave, is the key to optimizing the vibro-acoustic method for locating buried gas pipes.

4. Discussion

Although the s = 2 wave can induce stronger vibration signals for locating buried gas pipes, it has
limitations with greater attenuation than the s = 1 wave in an axial direction. This implies getting
stronger signals comes at the expense of locating the distance. Choosing an effective excitation method
and suitable excitation frequency may help alleviate this problem. In practical applications, the s = 2
wave should be effectively obtained by excitation with direct contact to pipe wall, although further
experimental verification is required. Actually, the problem of sacrificing detection distance also exists
when the s = 1 wave is chosen as the target wave. As shown in Figure 7b, the ERCs at higher frequency
are relatively greater than those in lower frequency, which means the s = 1 wave can radiate into the
soil more effectively and generate stronger signals at higher frequency. However, higher frequency
usually accompanies higher attenuation. Therefore, creating a balance between the strength of signals
and detection distance is of great concern. Further study could be conducted to evaluate the resonance
frequency of gas-pipe-soil system for use as excitation frequency.
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Another problem to investigate is the signal pick-up direction. The results in Figures 5–7 show
that in most cases, the axial displacements of soil are greater or at least comparable with radial
displacements. However there are exceptions, with radial displacements being greater than those
in axial directions in buried gas pipes in soil B, as shown in Figure 6c,d. The general magnitude
relationship between radial and vertical displacements cannot be determined in this study because
it also depends on the frequency range. Long et al. [18], Jette and Parker [26], and Gao et al. [30]
have shown some examples on the variation of soil displacements in frequency domain, verifying
the dependence on frequency. Hence, selecting a suitable signal picking direction according to the
excitation frequency is also beneficial for optimizing the vibro-acoustic locating method.

5. Conclusions

In this paper, the behaviors of gas-dominated wave as well as the effects of pipe material and soil
property have been studied. Furthermore, displacement distributions in a radial direction resulting
from gas-dominated wave and shell-dominated wave for buried gas pipe have been calculated and
presented. By comparing to water pipes, the following conclusions have been obtained.

Firstly, there is a great acoustic impedance difference between gas and pipe material, which results
in a weak coupling between gas and pipe-soil. Therefore, the pipe wall material and soil property
have little effect on the gas-dominated wave. As a result, the gas-dominated wave propagates as a
non-dispersive mode wave at the speed of around 339 m/s.

Secondly, when compared with the cast iron pipe, the PVC pipe can be more easily excited
because there is less pipe wall mass, which results in less inertia. The effect of soil property on soil
displacements mainly depends on the speed magnitude relationship between the target wave and
the bulk waves of soil, which determines whether the target wave can radiate into the surrounding
soil effectively.

Thirdly, weak coupling means the gas-dominated wave is trapped inside the pipe and cannot
radiate into soil as effectively as the water-dominated wave in a water pipe. When incorporating the
impacts of the pipe material and choosing the s = 1 wave as the target wave, the practicability of the
vibro-acoustic method in locating buried pipes ranked from high to low is: PVC water pipe, cast iron
water pipe, PVC gas pipe, and cast iron gas pipe. Accordingly, trying to excite an s = 1 wave may not
work for locating buried gas pipes.

Lastly, for buried gas pipe systems, soil displacements resulting from the s = 2 wave are much
greater than those due to a gas-dominated wave. Thus, applying the best excitation method to generate
the s = 2 wave is the key to locating buried gas pipelines. In addition, selecting an appropriate excitation
frequency range and determining a suitable signal-pick up direction could also make a contribution to
improving the current vibro-acoustic technique.
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Appendix A

A simplified analytical mode to clarify the dispersion relationships for axisymmetric wave motion
in buried fluid-fill pipe has been developed by Gao et al. [22]. Here, the derivation procedure is
reproduced briefly for completeness in this section. Consider a fluid-filled (gas or water) thin pipe
surrounded by infinite soil as depicted in Figure 1, where only axisymmetric wave motion is taken into
consideration over a frequency range well below the ring frequency, based on Donnell-Mushtari shell
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equation [31], the relationship between pipe vibration and pressure from fluid and soil loading can be
expressed as: [

A11
′ A13

′

A31
′ A33

′

](
ups

wps

)
=

1− σ2
p

Eph

(
−σrx(a)

pfs(a) + σrr(a)

)
(A1)

where A11
′ = ∂

∂x2 −
ρp(1−σ2

p)
Ep

∂
∂t2 ; A13

′ =
σp
a
∂
∂x ; A31 = A13; A33 = 1

a2 +
ρp(1−σ2

p)
Ep

∂
∂t2 .

Travelling wave solutions to this equation for each s wave (s = 1 corresponding to fluid-dominated
wave and s = 2 corresponding to shell-dominated wave) are assumed to have the form as:

ups = Upsei(ωt−ksx) ; wps = Wpsei(ωt−ksx) (A2)

where Ups and Wps are the amplitudes of the pipe wall displacements in axial and radial
directions, respectively.

The pressure of fluid inside the pipe can be expressed using Bessel function of order zero as:

pfs = Pfs J0
(
kr

fsr
)
ei(ωt−ksx) (A3)

where Pfs is an acoustic pressure coefficient for each s wave. The displacement of fluid in axial and
radial direction can be expressed in terms of pressure as follows:

ufs =
1

ρfω2

∂pfs

∂x
; wfs =

1
ρfω2

∂pfs

∂r
(A4)

For wave motion in the surrounding soil, the solutions to acoustic equation for each s wave can be
expressed using potential of compressional wave φms and shear wave ψms:

φms = AmsH0
(
kr

dsr
)
ei(ωt−ksx) ; ψms = BmsH0(kr

rsr)e
i(ωt−ksx) (A5)

where Ams and Bms are potential coefficients, H0( ) is Hankel function of the second kind and zero
order representing conical waves radiating from the pipe to surrounding soil. The displacements of
the soil can be represented using wave potentials as:

ums =
∂φms

∂x
−
∂2ψms

∂r2 −
∂ψms

r∂r
; wms =

∂φms

∂r
+
∂2ψms

∂x∂r
(A6)

Equations (A5) and (A6) yield:(
ums

wms

)
= T1

(
Ams

Bms

)
ei(ωt−ksx) (A7)

where T1 =

 −iksH0
(
kr

dsr
)

(kr
rs)

2H0(kr
rsr)

kr
dsH

′

0

(
kr

dsr
)
−ikskr

rsH
′

0(k
r
rsr)

.
According to Hooke’s Law, the stresses can be expressed as:

σrx = µm

(
∂wms

∂x
+
∂ums

∂r

)
; σrr = λm

[
1
r
∂
∂r

(
r
∂φms

∂r

)
+
∂2φms

∂x2

]
+ 2µm

∂ums

∂r
(A8)

Substitute Equations (A5)–(A7) into Equation (A8), gives:(
σrx

σrr

)
= T2

(
Ams

Bms

)
ei(ωt−ksx) (A9)
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where T2 =


−2iµmkskr

dsH1
(
kr

dsr
)

µmkr
rs

(
k2

s − (kr
rs)

2
)
H1(kr

rsr)

−2µm(kr
ds)

2
(
H0

(
kr

dsr
)
−

H1(kr
dsr)

kr
dsr

)
− λmk2

dH0
(
kr

dsr
)

2iµmks(kr
rs)

2
(
H0(kr

rsr) −
H1(kr

rsr)
kr

rsr

) .
Fluid and pipe wall interface at r = a, the displacement of fluid and pipe wall should be continuous

in radial direction [32], combining Equations (A2), (A3) and (A4), setting r = a gives:

−

kr
fs J1

(
kr

fsa
)

ρfω2 Pfsei(ωt−ksx) = Wpsei(ωt−ksx) (A10)

Eliminating the term ei(ωt−ksx), the relation between the amplitude of radial placement pipe wall
and amplitude of fluid pressure can be described as:

Pfs =
1
Υs

Wps (A11)

where Υs = −
ρfω

2

kr
fs

1
J1(kr

fsa)
. Combining Equations (A3) and (A11), the pressure of fluid at r = a can be

expressed as:

pfs(a) = −
ρfω

2

kr
fs

J0
(
kr

fsa
)

J1
(
kr

fsa
)Wpsei(ωt−ksx) (A12)

For the interface between surrounding soil and pipe wall at r = a, consider the situation where
the pipe wall is in compact contact to surrounding soil, the displacements of pipe wall and the
displacements of the soil must be continuous in both axial and radial directions [32], given that:

ums(a) = ups, vms(a) = vps (A13)

Substitute Equations (A2) and (A7) into Equation (A13) and set r = a, we can get:

T1|r=a

(
Ams

Bms

)
ei(ωt−ksx) =

(
Ups

Wps

)
ei(ωt−ksx) (A14)

Rearrange Equation (A14) gives:(
Ams

Bms

)
=

[
N11 N12

N21 N22

](
Ups

Wps

)
(A15)

where N = T−1
1 |r=a. In this way, combine Equations (A15) and (A9), the stresses from soil loading at

interface r = a can be expressed as:(
σrx(a)
σrr(a)

)
=

[
T11 T12

T21 T22

](
Ups

Wps

)
ei(ωt−ksx) (A16)

where T = T2
∣∣∣r = a ×T−1

1

∣∣∣
r = a.

Substitute Equations (A2), (A12) and (A16) into Equation (A1) and eliminate the term ei(ωt−ksx),
coupled equations becomes:[

Ω2
− (ksa)

2
−iσpksa

−iσpksa 1−Ω2

](
Ups

Wps

)
=

[
0 0
0 FL

](
Ups

Wps

)
+

[
SL11 SL12

SL21 SL22

](
Ups

Wps

)
(A17)
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where FL = −
1−σ2

p
Eph a2 ρfω

2

kr
fs

J0(kr
fsa)

J1(kr
fsa)

and SL =
1−σ2

p
Eph a2

[
−T11 −T12

T21 T22

]
. Rearrange Equation (A17),

we can get: [
Ω2
− (ksa)

2
− SL11 −iσpksa− SL12

−iσpksa− SL21 1−Ω2
− FL− SL22

](
Ups

Wps

)
= 0 (A18)

Setting the determinant of the coefficient matrix equal to zero, the dispersion equation of s wave is:[
Ω2
− (ksa)

2
− SL11 ]

[
1−Ω2

− FL− SL22
][

iσpksa + SL12 ]
[
iσpksa + SL21

]
= 0 (A19)
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