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Abstract
Introduction  Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk pre-
diction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. 
Historically, partial least squares (PLS) regression has been the gold standard for binary classification. Nonlinear machine 
learning methods such as random forests (RF), kernel support vector machines (SVM) and artificial neural networks (ANN) 
may be more suited to modelling possible nonlinear metabolite covariance, and thus provide better predictive models.
Objectives  We hypothesise that for binary classification using metabolomics data, non-linear machine learning methods 
will provide superior generalised predictive ability when compared to linear alternatives, in particular when compared with 
the current gold standard PLS discriminant analysis.
Methods  We compared the general predictive performance of eight archetypal machine learning algorithms across ten 
publicly available clinical metabolomics data sets. The algorithms were implemented in the Python programming language. 
All code and results have been made publicly available as Jupyter notebooks.
Results  There was only marginal improvement in predictive ability for SVM and ANN over PLS across all data sets. RF 
performance was comparatively poor. The use of out-of-bag bootstrap confidence intervals provided a measure of uncer-
tainty of model prediction such that the quality of metabolomics data was observed to be a bigger influence on generalised 
performance than model choice.
Conclusion  The size of the data set, and choice of performance metric, had a greater influence on generalised predictive 
performance than the choice of machine learning algorithm.

Keywords  Metabolomics · Partial least squares · Support vector machines · Random forest · Artificial neural network · 
Machine learning · Jupyter · Open source

1  Introduction

The multidisciplinary field of data science is concerned 
with extracting insights from data using a diverse set of 
computational methodologies, theories, and technologies 

(Blei and Smyth 2017). Within data science, there are two 
competing scientific philosophies: classical statistics and 
machine learning (Breiman 2001b). Classical statistics aims 
to formalise relationships between dependent and independ-
ent variables based on a clearly defined set of assumptions 
from which mathematical models are parametrised. The 
aim is to derive meaningful statistical inference (properties 
of an underlying probability distribution) for the measured 
variables, assuming that the observed data is sampled from 
a larger population. Conversely, machine learning uses ad-
hoc computational algorithms that iteratively optimise (or 
‘learn’) without necessarily relying on any formal statisti-
cal assumptions (Bishop 1995). Here, the aim is typically 
prediction rather than explanation, and inference is replaced 
by validation through testing the model with new data. Both 
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approaches add insight into a given data set. Ideally, one 
would like a machine learning method that can be used for 
both prediction and statistical inference. Historically, for 
metabolomics (Gromski et al. 2015), that method has been 
partial least squares regression (PLS) (Wold 1975; Wold 
et al. 1993).

PLS has become the standard multivariate machine learn-
ing algorithm in metabolomics for several reasons. Firstly, 
PLS is a projection method, where highly multivariate data 
is projected into a smaller coordinate space (latent vari-
ables) before regressing to a dependent variable. This not 
only allows data sets with more variables than samples to be 
modelled without resorting to prefiltering variables (essen-
tial for hypothesis-generating experiments), it also plays to 
the strength of metabolomics, over other ‘omic platforms, 
in that there is inherently a large amount of inter-metabolite 
covariance in any biological system (Dunn et al. 2011), 
which is likely best represented as latent structure. Sec-
ondly, once optimised, a PLS model can be reduced to the 
form of a standard linear regression, from which inference 
about the importance of constituent metabolites can be made 
(Gromski et al. 2015). Finally, the algorithm is computa-
tionally inexpensive, and historically excellent software has 
been readily available through companies such as Umetrics 
(Umeå, Sweden) and Eigenvector Research (Washington, 
USA). This has accelerated its widespread adoption across 
the metabolomics community.

While easily interpretable PLS is inherently a linear algo-
rithm, capable of modelling only linear latent covariance. As 
biological data are often non-linear (Mosconi et al. 2008) 
it is probable that metabolomics data also has a non-linear 
latent structure. As such, more complex non-linear machine 
learning methods such as random forest (RF), kernel sup-
port vector machine (SVM), and artificial neural networks 
(ANNs) may be more applicable for analysing metabo-
lomics data. These alternative methods have spasmodically 
appeared in metabolomics literature, but never really gained 
much traction. This could be due to convoluted methods 
for determining metabolite inference, but equally because 
historically these methods have been computationally expen-
sive, and software lacked widespread availability. As metab-
olomics experiments continue to become more complex in 
design, with increasingly large data sets, the opportunity to 
exploit concomitant advances in computational power and 
availability of open source software means that non-linear 
machine learning algorithms have become a viable alter-
native to PLS, particularly in situations where predictive 
performance is more important than inference.

The aim of this study was to compare the general predic-
tive performance of an archetypal set of linear and non-linear 
machine learning algorithms evaluated across a representa-
tive number of clinical metabolomics data sets. The num-
ber of data sets was limited to ten and represented a cross 

section of current published data in terms of measurement 
instrument, number of samples, and complexity of biological 
question. This allowed the study to be small enough to be 
tractable (providing all data and code as interactive Jupyter 
notebooks) but also large enough to extract some general 
conclusions. We hypothesise that for binary classification 
using metabolomics data, non-linear machine learning meth-
ods will provide superior generalised predictive ability when 
compared to linear alternatives, in particular when compared 
with the current gold standard PLS discriminant analysis.

It is important to note that it is not the aim of this study 
to challenge the published results related to these data sets, 
or to pitch data sets against each other. All interpretations 
should be based only on the relative performance of com-
peting algorithms for a given data set, and then a gener-
alised meta-analysis of performance rankings across data 
sets. Also, the aim is to compare predictive performance, 
not metabolite inference, thus no biological interpretation 
of models is considered.

2 � Methods

2.1 � Data sets

The following criteria were used to identify ten metabo-
lomics data sets for this comparative evaluation:

1.	 Data were of clinical origin.
2.	 Data were previously published.
3.	 Data publicly available at either MetaboLights or Metab-

olomics Workbench data repositories (www.ebi.ac.uk/
metab​oligh​ts; www.metab​olomi​cswor​kbenc​h.org)

4.	 Metabolite data available in a form amenable for direct 
modelling (All feature selection/deconvolution per-
formed and the resulting data matrix available in either 
a flat text file or common format of spreadsheet—e.g. 
Microsoft Excel).

5.	 Experimental data (e.g. Clinical Outcome) available in 
a form amenable for direct modelling.

6.	 A clear binary outcome available to model (either a 
primary or secondary outcome of the publication, or a 
subset of a multi-class study) and the number samples 
in each class are reasonably balanced.

7.	 Data representative of the three primary metabolomics 
technologies (nuclear magnetic resonance; gas chroma-
tography mass spectrometry; liquid chromatography 
mass spectrometry).

8.	 Data representative of multiple biofluids (e.g. blood, 
urine, faeces).

9.	 A range of samples sizes (from less than 50 to more than 
500).

http://www.ebi.ac.uk/metabolights
http://www.ebi.ac.uk/metabolights
http://www.metabolomicsworkbench.org
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The computational framework for this study (Sect. 2.4) 
required data to be converted to a standardised Microsoft 
Excel file format, using the Tidy Data framework (Wickham 
2014), where each variable forms a column, each observa-
tion forms a row, and each type of observational unit forms 
a table. To this end, for each study, data are split into two 
linked tables. The first, named Data, contains data values 
related to each observation. i.e. metabolite concentrations 
M1 …Mn , together with metadata such as: injection order, 
sample type, sample identifier and outcome class. The 
second table, named Peak, contains data that links each 
metabolite identifier ( Mi ) to a specific annotation (metabo-
lite name) and optional metadata (e.g. mass, retention time, 
MSI identification level, number of missing values, quality 
control statistics). Standardising the data format before data 
analysis enabled clear presentation, and efficient reuse, of 
computer code.

2.2 � Machine learning algorithms

The following eight machine learning methods were consid-
ered for this study:

1.	 Partial least squares regression (a.k.a. projection to 
latent structures).

2.	 Principal components regression.
3.	 Principal components logistic regression.
4.	 Linear kernel support vector machines.
5.	 Radial basis function kernel support vector machines.
6.	 Random forests.
7.	 Linear artificial neural networks.
8.	 Non-linear artificial neural networks.

All methods were implemented in the Python program-
ming language using standard packages where possible. 
Python packages: Sci-kit learn (Pedregosa et al. 2011), 
Numpy (Kristensen and Vinter 2010), Pandas (McKinney 
2010), Bokeh (Bokeh-Development-Team 2018), Keras 
(Chollet 2015), Theano (Theano-Development-Team 2016). 
Details are provided in the supplementary files.

Before providing a brief overview of each method it is 
important to understand the concept of a hyperparameter. 
In machine learning, a hyperparameter is a parameter that 
is used to either configure the structure of the underlying 
model or the characteristics of the learning process. Its value 
is fixed before the learning process begins. All other param-
eters (coefficients, or weights) are determined through the 
training process. Different algorithms require different, and 
possibly multiple hyperparameters. Some simple algorithms 
(such as logistic regression) require none, many require 
only one (PLS requires only the optimisation of the num-
ber of latent variables), and others (such as artificial neural 

networks and random forests) require many. The number, 
type and function are described below.

2.2.1 � Partial least squares regression

Partial least squares regression (PLS) (Wold 1975; Wold 
et al. 1993) is a widely used technique for constructing pre-
dictive models with metabolomics data (Gromski et al. 2015) 
(Broadhurst and Kell 2006), especially when the number of 
independent variables (metabolites) is much larger than the 
number of data points (samples). PLS uses the projection 
to latent space approach to modelling the linear covariance 
structure between two matrices ( � and � ). A PLS model 
will try to find the multidimensional direction in the � 
space that explains the maximum multidimensional vari-
ance direction in the � space. In lay terms: if the � matrix is 
thought of as a set of N data points in M-dimensional space 
(where, N is the number of samples and M is the number of 
metabolites), and � is a binary vector, length N , describing 
the classification of samples (e.g. case = 1 & control = 0), 
then PLS rotates and projects those data points into a lower 
dimensional space (typically 2 or 3 dimensions) such that 
discrimination (covariance) between the two labelled groups 
in the subspace is maximised.

Classification PLS is generally referred to as PLS dis-
criminant analysis (PLS-DA). Importantly, PLS-DA is 
considered a linear regression method as the final pre-
dictive model can be reduced to the standard linear form 
y∗ = �0 + �1x1 + �1x2 +…+ �nxN  , where �0 … �N  is a 
vector of PLS coefficients and y∗ is the model prediction 
(typically, we define a positive classification if y∗ > 0.5 and a 
negative classification if y∗ < 0.5 ). For this study, each PLS 
model was optimised using the SIMPLS algorithm (de Jong 
1993). PLS models have a single tuning hyperparameter: 
the number of latent variables (i.e. the number discriminant 
dimensions the � matrix is projected).

2.2.2 � Principal component regression

Principal component regression (PCR) (Hastie et al. 2009; 
Jolliffe 1982) was a mathematical precursor to PLS. It 
builds upon the widely used multivariate descriptive sta-
tistical model: principal components analysis (PCA) (Jol-
liffe 2002). In PCA the � matrix is rotated and projected 
into a lower dimensional space based on orthogonal covari-
ance, such that principal component 1 (PC1) describes the 
direction of maximal variance in � , principal component 2 
(PC2) describes the second orthogonal direction of maximal 
variance, PC3 the third direction … etc. PCA is converted 
into a predictive model by using the principal components 
as independent variables, and � as the dependent variable, 
in a multiple linear regression (MLR), with coefficients 
estimated by the least-squares method (Seber 2004). As 
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with PLS, PCR is considered a linear regression method 
as the independently calculated PCA + MLR coefficients 
can be combined and reduced to the standard linear form 
y∗ = �0 + �1x1 + �1x2 +…+ �nxN  , where �0 … �N  is a 
vector of PCR coefficients and y∗ is the model prediction 
(typically, we define a positive classification if y∗ > 0.5 and 
a negative classification if y∗ < 0.5 ). PCR models have a 
single tuning hyperparameter: the number of principal com-
ponents to use in the MLR.

2.2.3 � Principal component logistic regression

PLS and PCR are usually solved by minimizing the least 
squares error of the model fit to the data. As such, errors 
are penalized quadratically. The underlying assumption of 
this method is that model residuals are normally distributed 
( y − Xb = N(0, �) ). For a binary classification problem this 
may not be a valid (or useful) assumption. Consider a model 
for categorical outcomes ( y ∈ {0, 1} ), where we define a 
positive classification if y∗ > 0.5 and a negative classifica-
tion if y∗ < 0.5 . If the model predicts the outcome to be 
23 when truth is 1, or the model predicts the outcome to 
be − 43 when the truth is 0, nothing has been lost. Having 
an extremely large absolute error of prediction is not detri-
mental to the classification. However, least squares regres-
sion will consider this error important (remember all errors 
are penalized quadratically) and try to reduce it—unneces-
sarily. An alternative modelling technique is to make the 
binary outcome prediction a probability of correct classifi-
cation, rather than a regression. To do this we use logistic 
regression. For logistic regression, observations y ∈ {0, 1} 
are assumed to follow a Bernoulli distribution, and uses a 
logistic loss function to model the dependent variable. The 
logistic function acts as a squashing function for extreme 
positive or negative values, causing large errors to be penal-
ized asymptotically to a constant value (Menard 2002).

Accordingly, principal component logistic regression 
(PCLR) differs from PCR only in the change in loss function 
(logistic rather than quadratic), which can be visualised as a 
linear regression pushed through a logistic transformation 
(squashing function). So for PCLR, PCA is converted into a 
predictive model by using the principal components as inde-
pendent variables, and y as the dependent variable ( y ∈ {0, 1} ), 
in a logistic regression (LR), with coefficients estimated using 
the maximum likelihood method (Menard 2002). PCLR is also 
considered a linear regression method as the independently 
calculated PCA + MLR coefficients can be combined and 
reduced to a model that is “linear in the coefficients” of the 
form ln

(
p+

1−p+

)
= �0 + �1x1 + �1x2 +…+ �nxN  ,  where 

�0 … �n is a vector of PCLR coefficients and p+ is the predicted 
probability of positive outcome. PCLR models have a single 

tuning hyperparameter: the number of principal components 
to use in the MLR.

2.2.4 � Linear kernel support vector machines

The objective of the linear kernel support vector machine 
(SVM-Lin) algorithm is to find a hyperplane in an M-dimen-
sional space (M = the number of features) that distinctly 
classifies the N data points in the � matrix ( N ×M ). To 
separate two classes of data points, there are many possi-
ble hyperplanes that can be chosen. The role of the SVM 
algorithm is to determine the direction (or rotation) of the 
hyperplane that maximises the margin of discrimination (i.e. 
the distance between the closest data points at the edge of 
each class is made as large as possible). The support vectors 
are the data points that best define this margin. Importantly, 
and what makes SVM unique, is the process of maximising 
the margin makes the SVM robust to correctly classifying 
new data that may lie within that margin either side of the 
classification hyperplane (acting like a classification buffer). 
The loss function that enables SVM to maximize the mar-
gin is called the hinge loss function. SVM-Lin models have 
a single tuning hyperparameter called the regularization 
parameter (termed C for ‘cost’ by the Python library used in 
this study). The regularization parameter allows some flex-
ibility regarding the number of misclassifications made by 
the hyperplane margin (and can be thought of as the degree 
in which the buffer of a given thickness is enforced—Sup-
plementary Fig. 1). For a large value of C, the SVM will 
choose a small margin for the hyperplane if that hyperplane 
does a better job of getting all the training points classi-
fied correctly (hard margin). Conversely, a small value of C 
will cause the SVM to optimise to a larger margin separat-
ing hyperplane, even if that hyperplane misclassifies more 
points (soft margin). This regularisation is very important 
for allowing the SVM to generalise well and not over inflate 
the importance of individual data points in the optimisa-
tion process. An excellent detailed, and more mathematical, 
explanation of SVM is provided by Steinwart and Christ-
mann (2008).

2.2.5 � Radial basis function kernel support vector machines

SVMs can also be configured to perform non-linear classifi-
cation by implicitly mapping input data into a high-dimen-
sional feature space. This process is known as the kernel 
trick. The idea is to gain linearly separation by mapping 
the data to a higher dimensional space (see Supplemen-
tary Fig. 2). There are many kernel functions available, but 
the most popular is the radial basis function (RBF). An 
RBF, �(x, y) , maps the distance between two points into 
the range [0, 1] using a nonlinear transformation such that 
�(x, y) = �(∥ x − y ∥) . The standard RBF function is the 
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Gaussian function: �(x, y) = e−(�∥x−y∥)
2 , where � is a shap-

ing parameter to be tuned. The optimisation process for 
SVM-RBF is then identical to the SVM-Lin except now 
the optimal linear hyperplane is found with the assistance 
of the additional radial dimension, equivalent to a nonlinear 
hyperplane in the original data space. SVM-RBF models 
have two tuning hyperparameters: (i) the regularization 
parameter C (as described in 2.2.3) and (ii) the gaussian 
shape parameter, � . If � is large the Gaussian shape is very 
tight leading to over-fitting. Conversely, if � is very small, 
the transformation is ineffective. The two hyperparameters 
are somewhat interdependent. A small value of C can com-
pensate for a large value for � . An excellent explanation of 
kernel methods applied to SVM is provided by Schölkopf 
and Smola (2001).

2.2.6 � Random forests

Random Forest (RF) classifiers are radically different to 
the other ML methods used in this study. They are a type 
of ensemble classifier, where multiple base classifiers are 
trained and then aggregated to generate a single prediction. 
To avoid strong correlation between base classifiers, which 
in turn leads to overfitting, each base classifier must be 
unique, and thus differ in either the algorithm used, hyper-
parameter settings, or the training data. With RFs the base 
classifier is a decision tree. Thus, we are dealing with an 
ensemble of many decision trees (a forest of random deci-
sion trees).

A decision tree is top-down hierarchical structure of 
nodes connected by branches visualised as an inverted 
tree (Supplementary Fig. 3). Each node contains a logical 
question that sends a sample down one of two branches (a 
binary split), which in turn leads to another node, and on, 
and on, until it reaches a terminal node, which will provide 
a predicted classification. For example, to classify a new 
sample (say, based on a metabolite profile of 300 metabo-
lites: m1 …m300 ) we start at the root node and performs the 
split described therein (e.g. if m5 > 52 then Branch 1, else 
Branch 2). Depending on the result we then descend the tree 
to the next internal node (e.g. if m254 > 22 then Branch 3, 
else Branch 4). Eventually we reach a leaf node at which 
time a classification is made (e.g. if m42 > 12 then Case, else 
Control). The result is a complex, but intuitive, multivariate 
binary-logic based predictive classification algorithm. How-
ever, inherently, the deeper the tree the fewer data points are 
used to split the samples into different classes, and as such 
they are prone to overfitting unless very large data sets are 
employed.

Random forest classifiers aggregate multiple trees (typi-
cally 100+ trees) to ameliorate the overfitting problem. 
Specifically, it uses Classification and Regression Tree 

(CART) optimisation (Breiman et al. 1984). The algorithm 
also reduces the previously mentioned correlation issue by 
allowing only a random subset of features on which to base 
the split at each node (typically the number in this subsample 
is equal to the square root of the total number of available 
features). To avoid any additional overtraining, trees can be 
constrained to a maximum depth and, during training, the 
minimum number of samples at each split and a minimum 
number of samples at each leaf node can be fixed. It has 
been shown that averaging the classification across many 
overtrained shallow CARTs produces a robust multivariate 
classifier (Breiman 2001a). For this comparative study using 
metabolomics data our preliminary analysis showed that 
varying many of the hyperparameters had minimal impact 
on final RF performance (i.e. ‘number of trees’; ‘number 
of features sampled during training’; ‘minimum number 
of samples at each split’), thus they were kept constant at 
their default values. This reduced the number of tuneable 
hyperparameters to: (i) tree depth, and (ii) minimum num-
ber of samples classified at each leaf node during training 
(percentage).

2.2.7 � Linear artificial neural network

Artificial neural networks (ANNs), inspired by the biological 
interconnections in the brain, consist of a layered weighted 
network of interconnected mathematical operators (neurons). 
The most common ANN is the feed-forward neural network. 
Here, each neuron acts as a weighted sum of the outputs of 
the previous layer applied multiplied to an activation func-
tion (typically linear or logistic function). Thus, a neuron 
with a linear activation is equivalent to a multiple linear 
regression, and a neuron with a logistic activation function 
is equivalent to logistic regression. A two-layer ANN (Sup-
plementary Fig. 4) with a small number of linear neurons 
in the 1st layer (hidden layer) and a single linear neuron in 
the 2nd layer (output layer) is mathematically equivalent to 
PLS-DA, PCR. Moreover, a two-layer ANN with a small 
number of linear neurons in the hidden layer and a single 
logistic neuron in the output layer is mathematically equiva-
lent to PCLR.

During ANN training, the interconnection weights 
between each layer of neurons (equivalent to coefficients 
in a regression) are iteratively optimised in a two-phase 
cycle. Firstly, data is projected through the model to gener-
ate a prediction (forward propagation), after which an error 
term is calculated based on the difference between the tar-
get and predicted outputs for all available data. This error 
is then projected back through the network, and individual 
weights are adjusted along the way (backward propagation). 
The aim is to optimise the classification performance by 
minimising misclassification using an appropriate loss func-
tion. For binary classification the best ANN loss function is 
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cross-entropy: loss = −
(
y × ln

(
p+

)
+ (1 − y) × ln

(
1 − p+

))
 

where p+ is the predicted probability of positive classifica-
tion and y is the expected binary outcome. For ANN this loss 
function is then optimised using a gradient descent method 
(calculating the local loss function gradient and adjusting 
weights accordingly). The effectiveness of these methods 
is dependent on parameters that determine the rate and 
momentum of traversing the local error gradients (specifi-
cally ‘learning rate’, ‘momentum’, and ‘decay’ of the learn-
ing rate over time). This unique training method, known 
as backpropagation, allows for flexibility of ANN network 
architectures and a multitude of activation functions. For a 
detailed introduction to feedforward ANN please refer to 
Bishop (1995). When many layers on neurons are stacked in 
sequence the ANN is known as deep learning. Deep learn-
ing networks are beyond the scope of this study, but clearly 
warrant further investigation.

For this comparative study, a linear two-layer ANN with 
a small number of linear neurons in the hidden layer and 
a single logistic (sigmoidal) neuron in the output layer 
(ANN-LS) was implemented using stochastic gradient 
descent, with a binary cross-entropy loss function. Prelim-
inary explorative analysis indicated that hyperparameters: 
momentum, and decay, could be set to a constant value 
(0.5 and 0 respectively) with little variation on perfor-
mance. The hyperparameters epochs (number of training 
iterations), and learning rate are interdependent. Thus, we 
fixed the number of epochs (400) and varied the learning 
rate. This reduced the number of tuneable hyperparameters 
to: (i) the number of neurons in the hidden layer, and (ii) 
the learning rate.

2.2.8 � Non‑linear artificial neural network

To make the linear ANN into a non-linear ANN the hidden 
layer neurons can be changed to a non-linear activation func-
tion. In effect this is similar to the kernel trick described to 
SVM except the extra dimension is added to the latent vari-
able space (hidden neuron space) rather than directly to the 
problem space. Although ANN with RBF hidden neurons 
were one of the first ever reported kernel methods (Broom-
head and Lowe 1988; Park and Sandberg 1991) the more 
popular ANN with sigmoidal hidden neurons proved to be 
more effective (Bishop 1995; Wilkins et al. 1994). Thus, 
the final ML method in our collection is a two-layer ANN 
with a small number of sigmoidal hidden neurons and a sin-
gle sigmoidal output neuron (ANN-SS) implemented using 
stochastic gradient descent, with a binary cross-entropy loss 
function. Again, the momentum, decay and epochs hyperpa-
rameters could be set to a constant value (0.5, 0, 400 respec-
tively) without any detriment to performance. This reduced 

the number of tuneable hyperparameters to: (i) the number 
of neurons in the hidden layer, and (ii) the learning rate.

2.3 � Computational workflow

All workflows were implemented using the Python scripting 
language, presented in the form of interactive Jupyter note-
books following standard guidelines (Mendez et al. 2019a). 
All data and notebooks are publicly available on GitHub 
(https​://cimcb​.githu​b.io/Metab​Compa​rison​Binar​yML). 
Details of minor variations in the workflow for each indi-
vidual model are provided at the top of each notebook (also 
provided in static html format as supplementary data). The 
standardised workflow for building, optimising, evaluating, 
and reporting each of the 80 models generated in this study 
is summarised below.

2.3.1 � Splitting data into training and test sets

Multivariate predictive models are prone to overfitting. In 
order to provide some level of independent evaluation it is 
common practice to split the source data set into two parts: 
training data ( Xtrain and Ytrain ) and test data ( Xtest and Ytest ). 
The model is then optimised using the training data and 
independently evaluated using the test data. The true effec-
tiveness of a model can only be assessed using the test data 
(Broadhurst and Kell 2006; Xia et al. 2013). It is imperative 
that both the training and test data are equally representa-
tive of the sample population, or else the test prediction will 
prone to sampling bias. For these workflows each data set is 
split with a ratio of 2:1 (2/3 training, 1/3 test) using stratified 
random selection. The data is split once and then applied to 
each ML method.

2.3.2 � Optimisation

Using the training data only, each model was optimised 
either using a linear search of a single hyperparameter, or a 
grid search of two hyperparameters, depending on the model 
type. Following fivefold cross-validation with 10 Monte 
Carlo repartitions (Broadhurst and Kell 2006; Hastie et al. 
2009), plots of ||R2 − Q2|| vs.Q

2 were generated to determine 
the optimal hyperparameter values (where R2 is the coef-
ficient of determination for the full data set, and Q2 is the 
mean coefficient of determination for cross-validated pre-
diction data across the 10 MC repartitions). The optimal 
hyperparameter was selected at the point of inflection of 
the outer convex hull of the ||R2 − Q2|| vs.Q

2 data (i.e. Pareto 
optimization (Miettinen 1999)) (Fig. 1). If a clear inflection 
point was not present the hyperparameter (outcome) sitting 
on the Pareto front closest to the line ||R2 − Q2|| = 0.2 was 
deemed optimal, based on the general rule that a difference 
between training and validation performance greater than 

https://cimcb.github.io/MetabComparisonBinaryML
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20% is indicative of overtraining (Eriksson et al. 2013). It 
has been previously shown (Szymańska et al. 2012) that for 
binary PLS-DA a more appropriate measure of performance 
is the area under the receiver operating characteristic curve 
(AUC). As such, plots of ||AUCFull − AUCCV

|| vs.AUCCV were 
also provided and utilised as appropriate.

2.3.3 � Model evaluation using test data

Using the optimal hyperparameters, a new model is fit using 
the training data only ( Xtrain and Ytrain ). When Xtrain is applied 
to the model it produces a training prediction data ( Y∗

train
 ). 

The similarity of Ytrain to Y∗
train

 gives an indication of train-
ing performance. The model is then independently evaluated 

by applying the test metabolite data ( Xtest ; transformed and 
scaled using the metrics applied to Xtrain ). This produces a 
test prediction ( Y∗

test
 ). The similarity of Ytest to Y∗

test
 gives an 

indication of test performance. For binary classification the 
best performance indicator is the receiver operator charac-
teristic (ROC) curve (i.e. ROCtrain , ROCtest ) which can be 
further reduced to a single statistic using the area under the 
ROC curve (i.e. AUCtrain , AUCtest).

2.3.4 � Generalised predictive ability

Although the above ‘test data evaluation’ gives a good 
estimate of the true model performance when data sets are 
large, it potentially gives a biased estimate of performance 

Fig. 1   Hyperparameter optimisation. a An example of a standard R2

/Q2 plot used for single hyperparameter optimisation (e.g. PLS). The 
optimum hyperparameter value (number of latent variables) indicated 
by the red square. b The corresponding generalised ||R2 − Q2|| vs.Q

2 
plot used for hyperparameter optimisation that is extended from (a), 
where the optimal number hyperparameter value (red circle) lies at 
the inflection of the data curve. c An example of a standard R2/Q2 plot 
used for multiple hyperparameter optimisation (e.g. ANN—one plot 

for “number of neurons” and another for “learning rate”). These plots 
are difficult to interpret as there are multiple curves for a given fixed 
value of the 1st hyperparameter across all the possible values of the 
2nd hyperparameter. d The corresponding ||R2 − Q2|| vs.Q

2 plot where 
each point corresponds to the evaluation for a pair of hyperparame-
ter values. The optimal point, at the infection of the Pareto curve, is 
labelled as a red circle and this corresponds to the two red squares in 
(c), and optimal hyperparameter pair: number of neurons = 5 & learn-
ing rate = 0.01
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when data sets are small. All sampled data sets are subject 
to sampling bias, such that they may not be truly representa-
tive of the generalised relationship being modelled (e.g. the 
metabotype for a specific disease). The smaller the sample 
data set the higher the probability of bias. This problem is 
only compounded when an already small sample is split 

into training and test data set. This bias can result in overly 
optimistic, or overly pessimistic evaluation, depending on 
the random chance of selecting an unrepresentative test set.

A measure of this uncertainty in prediction can be deter-
mined empirically by calculating confidence intervals of 
both the training and test evaluation metrics using bootstrap 

Fig. 2   Bootstrap Model Performance. Training and test area under the Receiver Operator Characteristic curve (95% in-bag and out-of-bag boot-
strap confidence intervals) for the complete matrix of datasets and machine learning methods
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resampling (DiCiccio and Efron 1996; Efron 2000). The the-
oretical details of bootstrapping are beyond the scope of this 
paper. Briefly, this methodology allows accurate estimation 
of sampling distributions for almost any statistic by repeated 
random sampling. Each random sample selects ~ 2/3rd of the 
data points (called the in-bag sample, IB) leaving ~ 1/3rd (the 
out-of-bag sample, OOB). As such, bootstrapping can be 
useful for the evaluation of the optimal ML model configu-
ration in metabolomics (Broadhurst and Kell 2006; Mendez 
et al. 2019b; Xia et al. 2013).

In this study, for each workflow, a model with the fixed 
optimal hyperparameter values (derived in 2.3.3) is retrained 
on data randomly sampled (IB sample) from the complete 
data set, and then evaluated on the unused data (OOB sam-
ple) for 100 resamples. This produces 100 different models, 
and therefore 100 IB predictions, and 100 OOB predictions. 
These predictions can then be translated into ROC curves 
from which 95% confidence interval can be calculated.

Note: The most effective way to get a true estimate of 
general performance is to ask a candidate model to predict 
scores for independently measured data (independent test 
data). Unfortunately, for the studies used in this paper, inde-
pendent test data were unavailable. As such, the metrics pre-
sented are only estimates; however, the variability presented 
though confidence intervals allows some understanding of 
the uncertainty of any explicit single model performance 
metric, particularly when metrics are being compared across 
multiple competing ML algorithms (Xia et al. 2013).

3 � Results

3.1 � Data sets

The ten data sets curated for this study are described in 
Table 1. Six of the data sets were retrieved from Metabo-
lights and four from Metabolomics Workbench data reposi-
tories. Six data sets acquired using LC–MS, two using NMR, 
and two using GC–MS. There was a cross section of bioflu-
ids (Plasma, Serum, Urine, Caecal, Saliva, Stool). The size 
of data set ranged from 59 to 968 subjects (data sets were 
reasonably balanced in outcome). Number of metabolites 
included in each data set ranged from 29 to 689. The out-
come comparison (binary classification) performed is briefly 
described in the table and explained in detail at the top of 
each Jupyter notebook in the supplementary html files. Each 
data set was split into 2/3 training and 1/3 test using strati-
fied random selection. The identical training and test sets 
were applied to each ML method so that comparison was 
unbiased.

3.2 � Comparative evaluation of generalised 
predictive ability across ML methods

The hyperparameters for all 80 models were successfully 
optimised (see supplementary html files). For each optimally 
configured model, training/test data ROC curves was con-
structed and AUC​train / AUC​test calculated. Bootstrap resa-
mpling/retraining (n = 100) was performed and in-bag (IB) 
/ out-of-bag (OOB) 95% confidence intervals were calcu-
lated. These results are presented as an annotated heatmap 

Table 1   The ten data sets curated for this study

*Indicates data sourced from Metabolomics Workbench (https​://www.metab​olomi​cswor​kbenc​h.org)
a Indicates data sourced from Metabolights (https​://www.ebi.ac.uk/metab​oligh​ts/)

Study ID Publication Platform Type No. of sam-
ples (case/
control)

No. of peaks Case/control

MTBLS90a Ganna et al. (2014);
Ganna et al. (2015)

LC–MS Plasma 968 (485/483) 189 Sex (M/F)

MTBLS92a Hilvo et al. (2014) LC–MS Plasma 253 (142/111) 138 Breast cancer chemotherapy (before/after)
MTBLS136a Stevens et al. (2018) LC–MS Serum 668 (337/331) 689 Postmenopausal hormone (estrogen/estrogen + pro-

gesterone)
MTBLS161a Armstrong et al. (2015) NMR Serum 59 (34/25) 29 Chronic fatigue syndrome (case/control)
MTBLS404a Thévenot et al. (2015) LC–MS Urine 184 (101/83) 120 Sex (M/F)
MTBLS547a Zheng et al. (2017) LC–MS Caecal 97 (46/51) 42 High fat diet (case/control)
ST000369* Fahrmann et al. (2015) GC–MS Serum 80 (49/31) 181 Adenocarcinoma (case/control)
ST000496* Sakanaka et al. (2017) GC–MS Saliva 100 (50/50) 69 Debridement (pre/post)
ST001000* Franzosa et al. (2019) LC–MS Stool 121 (68/53) 747 Inflammatory bowel diseases (Crohn’s disease/

ulcerative colitis)
ST001047* Chan et al. (2016) NMR Urine 83 (43/40) 149 Gastric cancer (gastric cancer/healthy)

https://www.metabolomicsworkbench.org
https://www.ebi.ac.uk/metabolights/
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in Fig. 2. An interactive version of this figure linking each 
performance metric to a unique Jupyter notebook (including 
multiple statistics and visualisations) is available here: https​
://cimcb​.githu​b.io/Metab​Compa​rison​Binar​yML/.

If the 95% confidence intervals are initially ignored, and 
the comparative evaluation across ML methods is based 
exclusively on the explicit test set predictions (AUC​test), 
then SVM-RBF performs best across all data sets, closely 
followed by the nonlinear ANN-SS; however, the mean dif-
ference in AUC​test between SVM-RBF and ANN-SS across 
all data sets was only 0.004 (0.4%). The mean difference in 
AUC​test between SVM-RBF and PLS-DA was 0.02 (2%).

The mean difference in AUC​test between SVM-Lin and 
SVM-RBF was 0.006 (0.6%). The mean difference in AUC​
test between ANN-LS and ANN-SS was 0.023 (2.3%).

When the OOB 95% confidence intervals is used for test 
prediction then no single ML method is superior. ANN-LS, 
ANN-SS, SVM-Lin, SVM-RBF, and PLS-DA have very 
similar confidence intervals for each data set (for example, 
Fig. 3 shows the complete set of ROC curves for data set 
MTBLS404).

If a single ML method is compared across multiple data 
sets, there is an observable inverse correlation between 
sample size and OOB 95% confidence interval (the fewer 
the samples the broader the confidence interval). This is 
illustrated in Fig. 4, where the ANN-SS ROC curves are 
presented for 3 different size data sets (n = 968, n = 235, and 

n = 83). Note that there is no observed correlation between 
performance and the number of metabolites modelled.

4 � Discussion

The primary hypothesis of this study was that for binary 
classification using metabolomics data, non-linear machine 
learning methods would provide superior generalised pre-
dictive ability when compared to linear alternatives, in par-
ticular when compared with the current gold standard partial 
least squares discriminant analysis (PLS-DA). Based on the 
ten data sets curated for this study, and the eight chosen 
machine learning methods, this primary hypothesis was 
disproved. Although support vector machines using a non-
linear radial basis function kernel (SVM-RBF) and the fully 
sigmoidal feed-forward artificial neural network (ANN-SS) 
proved to be superior for all compared data sets with respect 
to AUC​test, the difference in performance against their lin-
ear counterparts (ANN-LS and SVM-Lin) and PLS-DA 
was marginal once generalised confidence intervals were 
calculated. These results suggest that in general, for binary 
classification, metabolomics data is linearly separable, par-
ticularly when projected into a latent space. There is no need 
for the “kernel trick” described in Sect. 2.2.5. The poor over-
all performance of random forests (RFs) will be surprising 
to some, given claims that RFs cannot overfit. However, as 

Fig. 3   Illustration of the similarity of test prediction across all ML 
algorithms. The complete set Receiver Operator Characteristic 
curves for Data Set MTBLS404. Green line = ROCtrain, green shad-
ing = in-bag 95% confidence interval, yellow line = ROCtest, yellow 

shading = out-of-bag 95% confidence interval. This resulted in: a 
AUC​test = 0.92; b AUC​test = 0.91; c AUC​test = 0.91; d AUC​test = 0.80; 
e AUC​test = 0.94; f AUC​test = 0.95; g AUC​test = 0.94; h AUC​test = 0.95

https://cimcb.github.io/MetabComparisonBinaryML/
https://cimcb.github.io/MetabComparisonBinaryML/
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Hastie et al. (2009) prove “when the number of variables is 
large, but the fraction of relevant variables small, random 
forests are likely to perform poorly with small m [number 
of samples]”. The inherent covariance in metabolomics 
data, which is an advantage to projection methods, hold no 
advantage for the random feature selection and data splitting 
performed by RF.

A second important observation from this study was that, 
despite standard k-fold cross-validation for optimisation, 
every model overtrained, and that the more complex the ML 
method the more severe the overtraining. This will be unsur-
prising to experts in the field, but it is worth noting. This is 
most strikingly observed in Fig. 2. The performance met-
rics (AUC​train & AUC​test) for each model/data pair should, 
if not overtrained, be of the same value (same hue of blue in 
Fig. 3). Clearly, for several data sets the RF, SVM-RBF and 
ANN-SS are severely overtrained (reflected in differences 
between AUC​train and AUC​test of up to 25%). This is further 
illustrated in Fig. 3, where the in-bag ROC curves showed 
AUC​train > 0.98 for the PLS-DA, SVM-Lin, SVM-RBF 
and ANN-SS models applied to data set MTBLS404, but 
AUC​test were more conservative (0.92–0.95). As such, it is 
imperative that an estimate of generalised predictive ability 
is presented alongside any published model, preferably using 
an independently measured test data set or alternatively a 
methodology similar to the train/test or out-of-bag bootstrap 
method described herein. It is misleading to only present 
the confidence interval for the training data as a measure 
generalised prediction.

Thirdly, it is important to discuss the utility of calculating 
the bootstrap confidence interval for each candidate model 
configuration for the applied data. When data sets are small 
and potentially heterogeneous (as often observed in clinical 

studies) the use of random data splitting (e.g. 2/3 training, 
1/3 test) to provide an unbiased performance evaluation can 
be dangerous. For truly unbiased evaluation the test set must 
exactly represent the training data. This may not be possible 
by random methods (even when stratified by outcome). This is 
illustrated in Fig. 5 where, for data set ST001047, the random 
split is repeated 5 times with dramatically different perfor-
mance for a PLS-DA model using two latent variables. The 
bootstrap resampling enables the modeller to estimate this 
uncertainty. It is worth noting that for all 80 of the models 
presented in this paper the ROCtest curve lay within the bounds 
of the respective OOB 95% confidence interval (see supple-
mentary notebooks). Even so, such bootstrapping provides 
only an estimate and care must be taken as there is a certain 
amount of data leakage as the same data that is being used to 
select the hyperparameters is being used to evaluate the model.

A final, but equally important, observation from this study 
was that the stability of a model was dependent on the num-
ber of samples available for training. This is best illustrated in 
Fig. 4. Here the generalised predictive ability of an ANN-SS 
model is compared across three data sets of increasing size. 
For data set ST001047 (n = 83) the out-of-bag ROC curves 
vary dramatically from AUC​OOB = 0.75–0.98). This implies 
that the underlying model parameters varying massively due 
to heterogeneity of the in-bag training sets. Which leads to the 
question: Is the complete data set a representative sample of 
the biological question? (in this case classifying gastric can-
cer). This phenomena, known as the Rashomon Effect, has 
been discussed at length by Breiman (2001b), Broadhurst 
and Kell (2006) and Broadhurst (2017). In contrast, data set 
MTBLS90 (n = 968) has extremely stable out-of-bag ROC 
curves implying that there is sufficient data to robustly model 
the biological question.

Fig. 4   Inverse correlation between sample size and confidence inter-
vals of models. SVM-RBF Receiver Operator Characteristic curves 
for three different size data sets (n = 968, n = 235, and n = 83). Green 

line = ROCtrain, green shading = in-bag 95% confidence interval, yel-
low line = ROCtest, yellow shading = out-of-bag 95% confidence inter-
val



	 K. M. Mendez et al.

1 3

150  Page 12 of 15

5 � Limitations of the study

While the results of this study will hopefully prove useful to 
the metabolomics research community, it is important to list 
some limitations. Firstly, focusing on binary classification 
we may have oversimplified the problem space. Non-linear 
ML methods may be more effective in multi-class problems, 
so results need to be interpreted with this in mind. Secondly, 
by focussing on published data there is a possibility that 
the results are biased (publication bias). All the data set 
used in this study were successfully published using a lin-
ear model. Given that, generally, only positive results are 
published it may be that, despite our best efforts, we did not 
have access to data sufficiently complex to require a non-
linear model. Finally, the ML algorithms with more than 
two hyperparameters (i.e. ANN and RF) are presented in 
the Jupyter notebooks such that we limit the search strategy 
to a grid search of the two most sensitive hyperparameters, 
fixing the other hyperparameters at a constant value. A full 
parameter search was performed for each individual model 
under cross-validation conditions, and repeatedly the same 

hyperparameters had little effect on optimisation, so for clar-
ity of presentation they were fixed at the same value across 
all data sets in the Jupyter notebooks provided. Interested 
readers are encouraged to download the data and notebooks 
and verify our findings.

6 � Conclusions

In this study of binary classification across ten publicly avail-
able metabolomics datasets we have shown that using non-
linear machine learning showed no general improvement in 
predictability over linear methods. If we use the principle of 
Occam’s razor, where the simplest model wins out, PLS-DA 
remains a sensible first choice. However, improved compu-
tational power and open availability of high-quality software 
libraries means that comparing multiple models of a given 
data set is tractable. Our results clearly demonstrate that of 
equal importance to the choice of machine learning method 
is the way that each method is optimised, and how its gener-
alised performance is evaluated. It is far too easy to overtrain 

Fig. 5   Prediction uncertainty when using train/test data splitting 
for validation. Receiver Operator Characteristic curves for training/
test performance of PLS-DA on data set ST001047 for five itera-
tions of stratified random splitting (2/3 training and 1/3 test). Green 
line = ROCtrain, yellow line = ROCtest. This resulted in: a AUC​

train = 0.96, AUC​test = 0.87; b AUC​train = 0.97, AUC​test = 0.96; c AUC​
train = 0.97, AUC​test = 0.88; d AUC​train = 0.98, AUC​test = 0.90; e AUC​
train = 0.99, AUC​test = 0.98. d The 95% OOB confidence interval for 
the same data. Note all a–e ROCtest curves lie within the 95% confi-
dence interval
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a complex model and erroneously report misleading results. 
We have provided a generalised framework to investigate 
eight machine learning algorithms and a generalised opti-
misation and evaluation workflow that can be applied to any 
multivariate data with a binary outcome variable.

The likely most important conclusion from this study is a 
reiteration of the well-established machine learning trope a 
model is only as good as the data that is used to train it. We 
consider the 10 datasets used in this study are representative, 
both in sample size and scope, of biomarker studies pub-
lished in metabolomics. The results presented here suggest 
that for robust predictive models the most important con-
sideration is statistical power. There is no magic formula for 
calculating the number of samples needed for robust metab-
olomics multivariate machine learning, where estimates are 
dependent on many factors, including: the dimensionality 
of the data, the strength of effect, the degree of covariance 
(strength of latent structure), the heterogeneity of the sample 
population, the repeatability of the measurement instrument, 
and the complexity of the model. However, as pointed out 
by Breiman (2001b), the curse of dimensionality dictates 
that the expected generalization error is proportional to the 
complexity of the model and inversely proportional to the 
number of samples used to build the model. Thus, for high 
dimensional data a complex model trained on a small data 
set will tend to have poor generalised performance as a clas-
sifier. Put simply, the larger and better curated (cleaned and 
identified) the data set, the more amenable it will be to non-
linear machine learning algorithms.

7 � Future perspectives

In order for machine learning to have a meaningful impact 
on metabolomics then larger data sets need to be collated, 
and those data have to be pass stringent quality control 
checks (Broadhurst et al. 2018). It is important to note that 
an increasing number of metabolomics researchers, par-
ticularly in the clinical domain, outsource metabolomics 
data acquisition. Companies such as Metabolon (https​://
www.metab​olon.com/), Nightingale Health (https​://night​
ingal​eheal​th.com/), and Biocrates (https​://www.biocr​ates.
com/) have built business models that depend on providing 
high-quality fully annotated data sets in a format ame-
nable for data science. Most large academic laboratories 
also provide some level of similar service. This is illus-
trated by the recent successful ring trial for the Biocrates 
AbsoluteIDQ p400HR assay (Thompson et al. 2019) which 
will allow data sets from multiple labs to be potentially 
combined into one data analysis. Other approaches to data 

fusion have most recently been reported in the American 
Journal of Epidemiology by Yu et al. (2019) “Consortium 
of Metabolomics Studies (COMETS) Metabolomics in 47 
Prospective Cohort Studies”.

As machine learning methods get more complex the 
demands for data get greater. The recent successes of deep 
learning in image processing, peak deconvolution and 
metabolite identification (Mendez et al. 2019a) means it is 
likely that such methods will also be applied to predictive 
modelling. As a community it is important that mecha-
nisms are put in place to avoid over optimistic reporting 
of results, and that it is not simply assumed that a complex 
model is the best model. There is an urgent need for trans-
parent and consistent reporting of all aspects of the metab-
olomics study lifecycle. The metabolomics community has 
made substantial efforts to align with FAIR (Findable, 
Accessible, Interoperable, and Reusable) data principles 
by utilizing open data formats [e.g. mzXML (Pedrioli et al. 
2004)], developing data repositories [e.g. MetaboLights 
(González-Beltrán et al. 2012) and Metabolomics Work-
bench (Sud et al. 2016)], and with online spectral refer-
ence [e.g. METLIN (Smith et al. 2005), mzCloud (https​://
www.mzclo​ud.org/), MassBank (Horai et al. 2010), GNPS 
(Wang et al. 2016)], and online databases for metabolite 
identification and biochemical association [e.g. HMDB 
(Wishart et al. 2018)]. However, significant efforts are 
required to find ways to make metabolomics data model-
ling FAIR. One such approach is through Jupyter note-
books (Mendez et al. 2019b). Hopefully, the 80 Jupyter 
notebooks provided for this study will help inspire more 
open reporting of predictive modelling in metabolomics 
(https​://cimcb​.githu​b.io/Metab​Compa​rison​Binar​yML).
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