
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2014 to 2021 

7-1-2020 

Nanomaterial-based drilling fluids for exploitation of Nanomaterial-based drilling fluids for exploitation of 

unconventional reservoirs: A review unconventional reservoirs: A review 

Muhammad Ali 
Edith Cowan University 

Husna Hayati Jarni 

Adnan Aftab 

Abdul Razak Ismail 

Noori M.Cata Saady 

See next page for additional authors 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 

 Part of the Engineering Commons 

10.3390/en13133417 
Ali, M., Jarni, H. H., Aftab, A., Ismail, A. R., Saady, N. M. C., Sahito, M. F., ... & Sarmadivaleh, M. (2020). Nanomaterial-
based drilling fluids for exploitation of unconventional reservoirs: A review. Energies, 13(13), 3417. https://doi.org/
10.3390/en13133417 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworkspost2013/8566 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F8566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F8566&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/en13133417
https://doi.org/10.3390/en13133417
https://doi.org/10.3390/en13133417


Authors Authors 
Muhammad Ali, Husna Hayati Jarni, Adnan Aftab, Abdul Razak Ismail, Noori M.Cata Saady, Muhammad 
Faraz Sahito, Alireza Keshavarz, Stefan Iglauer, and Mohammad Sarmadivaleh 

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworkspost2013/8566 

https://ro.ecu.edu.au/ecuworkspost2013/8566


energies

Review

Nanomaterial-Based Drilling Fluids for Exploitation
of Unconventional Reservoirs: A Review

Muhammad Ali 1,2,* , Husna Hayati Jarni 3, Adnan Aftab 4,* , Abdul Razak Ismail 5,
Noori M. Cata Saady 6 , Muhammad Faraz Sahito 7, Alireza Keshavarz 2, Stefan Iglauer 1,2 and
Mohammad Sarmadivaleh 1

1 Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick
Perry Avenue, Kensington, Perth 6151, Australia; s.iglauer@ecu.edu.au (S.I.);
mohammad.sarmadivaleh@curtin.edu.au (M.S.)

2 School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia;
a.keshavarz@ecu.edu.au

3 Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia;
husnahayati@uitm.edu.my

4 Petroleum Engineering Department, Mehran UET, Kahirpur Mir’s Campus, Sindh 66020, Pakistan
5 Petroleum Engineering Department, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;

razak@utm.my
6 Department of Civil Engineering, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada;

nsaady@mun.ca
7 College of Engineering & Applied Engineering, King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia; muhammad.faraz.h@gmail.com
* Correspondence: Muhammad.ali7@postgrad.curtin.edu.au (M.A.); Adnanaftab@muetkhp.edu.pk (A.A.)

Received: 17 May 2020; Accepted: 30 June 2020; Published: 2 July 2020
����������
�������

Abstract: The world’s energy demand is steadily increasing where it has now become difficult for
conventional hydrocarbon reservoir to meet levels of demand. Therefore, oil and gas companies are
seeking novel ways to exploit and unlock the potential of unconventional resources. These resources
include tight gas reservoirs, tight sandstone oil, oil and gas shales reservoirs, and high pressure
high temperature (HPHT) wells. Drilling of HPHT wells and shale reservoirs has become more
widespread in the global petroleum and natural gas industry. There is a current need to extend
robust techniques beyond costly drilling and completion jobs, with the potential for exponential
expansion. Drilling fluids and their additives are being customized in order to cater for HPHT
well drilling issues. Certain conventional additives, e.g., filtrate loss additives, viscosifier additives,
shale inhibitor, and shale stabilizer additives are not suitable in the HPHT environment, where
they are consequently inappropriate for shale drilling. A better understanding of the selection of
drilling fluids and additives for hydrocarbon water-sensitive reservoirs within HPHT environments
can be achieved by identifying the challenges in conventional drilling fluids technology and their
replacement with eco-friendly, cheaper, and multi-functional valuable products. In this regard,
several laboratory-scale literatures have reported that nanomaterial has improved the properties of
drilling fluids in the HPHT environment. This review critically evaluates nanomaterial utilization
for improvement of rheological properties, filtrate loss, viscosity, and clay- and shale-inhibition at
increasing temperature and pressures during the exploitation of hydrocarbons. The performance
and potential of nanomaterials, which influence the nature of drilling fluid and its multi-benefits, is
rarely reviewed in technical literature of water-based drilling fluid systems. Moreover, this review
presented case studies of two HPHT fields and one HPHT basin, and compared their drilling fluid
program for optimum selection of drilling fluid in HPHT environment.
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1. Introduction

Drilling fluids are essential consumables for drilling and exploration activities. Every drilling
activity requires appropriate drilling fluids program, where they are used extensively across the globe.
Different types of drilling fluids are available within the market with differing performances designed
to fit selective purposes, in addition to varied costs of fluid and environmental impacts [1,2].
The consumption of drilling fluids and additives depends directly on drilling fluid activities that are
carried out globally. The increasing demand for energy has encouraged oil and gas companies to
drill unconventional reservoirs in order to fulfill energy supply. Energy demand can be compensated
through unconventional resources include heavy oil [3,4], gas hydrates [5], coal bed methane [6–11],
tight gas [12–16], gas and oil shale [16–18], and high pressure high temperature (HPHT) wells [19–21].
New explorations in HPHT environments has led to a rise in drilling activities globally. The HPHT
environment (i.e., 422–589 K and pressure of 138 MPa to 276 MPa) requires suitable techniques
and selection of particular technologies in order to conduct drilling into extreme environments [22].
Likewise, formulations of drilling fluids play an important role in drilling within HPHT environments.
Therefore, oil-based drilling fluids (OBDF) have been repeatedly used in HPHT drilling fluid systems,
where they have been shown to be effective in shale drilling in HPHT downhole environments [23].
However, OBDF is toxic for marine species [24] and involves a high cost [25] because it is mostly
made up of diesel oil [26]. Therefore, investigators have been consistently working to improve
the characteristics of water-based drilling fluid system (WBDF) for unconventional reservoirs and
drilling operation, where WBDF is inexpensive [27] and environmental friendly [28]. Eighty percent of
oil and gas wellbore drilling operation uses WBDF [29]; however, WBDF possesses several problems
related to drag and torque, pipe sticking, formation damage, lost circulation, and wellbore instability
within HPHT downhole environments. However, researchers are currently working on improvements
to WBDF systems using polymers to enhance rheology, reduce filtrate loss and shale inhibition, and to
increase salt resistance [30–32].

Recently, researchers have widely studied polymeric material in conjunction with bentonite
to prepare drilling fluids for harsh condition, in particular HPHT [33,34]. Molecules of polymer
have long carbon chains and yield viscosity in the solution form [32,35]; thus, influencing rheology
filtrate loss and lubricity of drilling fluid systems [31,36]. Some natural polymers, in particular guar
gum, starch, and cellulose, have been successfully used alongside bentonite to achieve adequate
drilling fluid properties [37]. Naturally available polymers have been widely used due to their
low cost [38], and environmentally friendly nature [39]. Nonetheless, natural polymers have low
temperature stability [40–42]. High temperatures render the superior and thixotropic properties of
polymers inactive, adversely affecting rheological characteristics and resulting in a loss of drilling
fluid [43], inappropriate cutting, lifting barite sag problems [44,45], and increasing the cost of drilling.
Recently, Jain et al. [46] found that grafted polymer showed better rheological properties and filtration
performance compared to carboxymethyl cellulose (CMC) when considered as a drilling fluid additive
for shale drilling. Ternary copolymer reduced the fluid loss in the presence of high salt content of
drilling fluid additives and resulted in better salt tolerance. Moreover, the copolymer produced better
thermal stability within the drilling fluid system [29]. Nonetheless, some cellulose polymers have
been shown to degrade at 483 to 533 K [47], where polyacrylamide was substantially lost at around
378 K in the presence of oxygen. However, another study has reported this degradation between 388 to
723 K [48]. Drilling engineers currently require thermally stable, multifunctional, environmental, and
inexpensive durable drilling fluid additives for the drilling of unconventional HPHT reservoirs [49].
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Nanosize additives with enhanced characteristics are actively being investigated in regards to
drilling of HPHT wells [33,50]. Several nanomaterial have been investigated such as nano silica [51],
graphene oxide [52], graphene nanoplatelets [43,53], multi-walled carbon nanotube [51,54,55], single
walled carbon nanotube [54,56], nano ZnO [57,58], TiO2 [59], CuO [60], and Fe2O3, nano-cellulose,
nano-silica polymer grafted polymer [61], ZnO polymer nanocomposite [43], TiO2/polymer
nanocomposite [62], TiO2/clay nanocomposite [63], and several others [64].

Nanomaterials are widely used for different purposes, including enhanced oil recovery [65–
68], wettability alteration [69–72], IFT reduction [73–75], surface adsorption [76], and CO2 storage
applications [77–81]. They have a potential to augment rheological properties and shale inhibition of
unconventional HPHT wells, but this has not been reported in a review work to date. This paper is
devised to present a review on unconventional resources, HPHT wells and drilling fluids additives
used to drill HPHT and the superior role of nanomaterial additives in the drilling of HPHT wells.

2. Development of Unconventional Reservoirs

Unconventional reservoirs have different properties, behaviors, and flowing mechanisms [13,14].
The drilling mechanism of unconventional reservoirs varies according to type of lithology, downhole
chemistry, and downhole environment. Recoverable unconventional hydrocarbon reservoirs are
approximately 101.1 billion cubic meters; this estimation includes 27.5 billion cubic meters of sand
oil (Canada), 42.9 billion cubic meters of heavy oil and bitumen (Venezuela), 5.2 billion cubic meters
of oil shale in US, and 25.4 billion cubic meters shale oil around the world. Production of shale oil
was measured 405,417 cubic meters and continued to increase by 680,465 cubic meters in 2020 [82]
(Figure 1).
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Figure 1. World oil demand, supply and contribution of unconventional oil, adapted from [82].

3. HPHT Drilling Fluid Challenges

Selection of drilling fluid for HPHT conditions requires the consideration of several factors, in
particular geology, pore pressure, and downhole environment. Problems and issues associated with
the progress of drilling fluids include inefficient hole cleaning, loss of circulation zones, high-pressure
losses, and reservoir fluid invasions [83,84]. It is vital to develop fluid with a rheology profile of
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minimum variation between surface and downhole properties [85]. Table 1 illustrates downhole
temperature and pressure tier.

Table 1. Oil and gas well high temperature high pressure tiers [86].

Temperature Tiers Static Reservoir Temperature (K) Static Reservoir Pressure (MPa)

HPHT a 422–477 67–138

Ultra-HPHT 477–533 138–241

Extreme-HPHT 533–581 241–276
a HPHT = high pressure high temperature.

Thermal instability induces changes in fluid rheology, which affects drilling efficiency. Some other
high temperature effects on drilling fluids [87–89] are:

I. High temperature gelation: WBDF develops gelation under stationary conditions for a long
time at temperature through the flocculation of clay or bentonite. This is compounded by
the thermal deterioration of thinners, a fall in pH, and an augmentation in filtrate loss. Contact
of colloidal particles such as clays and fluid-loss additives and breakdown of emulsifiers may
raise gelation in OBDF. Logging the pressure required for gel breaking is imperative to halt
the surge pressure in HPHT wells, where if drilling fluid circulation is resumed quickly it may
cause a loss of circulation [87].

II. High temperature fluid loss: The combination of high temperature, gelation effect and
degradation of synthetic polymers due to thermal effects, influences static and dynamic fluid
losses in drilling fluid. It is very important to keep these low to reduce potential damage from
filtrate invasion [90].

III. Rheological property control: A drilling fluid with high density is required to develop control
over hydrostatic pressure and well control [91]. The rheology properties of high-volume
fraction of weight material in drilling fluid must be properly controlled. Inappropriate rheology
of drilling fluid can raise problems, such as inappropriate pressure losses and dispersion of clay.
Moreover, excessive surge pressure and swab can occur with little increases in colloidal-size
drilled solids. Additionally, these solids improve the rheological properties of the fluid [92].
However, levels below the acceptable values of rheological properties can cause other problems
such as inadequate hole cleaning, segregation of weighting material, and an inconsistent
density profile in the annulus which leads to loss of drilling fluid or problems of well control.
Moreover, recently Gul and Van Oot. [93] have used yield point, plastic viscosity mud weight,
and initial sample information to predict API filtrate loss volume using a/the random forest
regression model. Moreover, the predicted data was history matched with field scale API
filtrate loss data. The regression fit showed a 0.56 mL/30 min with mean absolute error for API
filtrate loss of WBDF. Moreover, a mean absolute error of 1.15 mL/30min/and 0.79 mL/min was
determined for HPHT filtrate loss (FL) of WBDF, and HPHT FL of OBDF, respectively.

IV. Material degradation: Many drilling fluid products are prone to thermal degradation at high
temperature. While some drilling fluids may survive initially, in a long trip time under HPHT
static conditions the drilling fluid properties can also deteriorate, vary drilling fluid density
and causing fluid loss [94].

V. Sagging of barite: Static and/or dynamic barite sag is a common problem encountered during
drilling in HPHT wells. This problem results from loss circulation, torque and drag, equivalent
circulation density (ECD) fluctuations, and also due to operation that requires drilling fluid to
be static for long time. Downs et al. [95] have observed that high loading of barite in typical
drilling fluids increase frictional pressure losses when circulating in long sections, leading
to unacceptably high ECD in narrow operating drilling windows (where pore pressures and
fracture pressures are very close to each other). The solids-carrying function of conventional
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drilling fluid can be deteriorated, triggering dynamic and static barite sag, and intensifying
the risk of losing well control in the case of high angle wells.

VI. Gas solubility: Conventional oil-based drilling fluids can take up large volumes of gas. Drilling
fluids kept static for long periods in long horizontal sections create well control problems and
deteriorate drilling fluid properties. Even when WBDF is used, the diffusion effect still exists,
although to a much small extent [96]. The gas influx that dissolves in the oil phase of OBDF
produces a new fluid mixture with unique phase equilibrium, and as this new mixture is in
the liquid phase and has its own distinctive bubble point pressure, this makes the detection
kick harder (Aberdeen Drilling School & Well Control Training Center, 2008). This new mixture
(gas dissolved in the drilling fluid) will destabilize the formulation, and impair the carrying
capacity of drilling fluid, raising weighting material (barite sag), precipitating cuttings, and
affect viscosity agents, in particular, clays [96].

Drilling fluid engineers are required to resolve these challenges and provide solutions by
finding adequate fluid formulations of good continuous performance in all adverse condition [39].
The drilling fluid system not only preserves favorable rheological properties at high temperature,
but also balances drilling fluid weight to contain formation pressure with minimum invasion. It also
achieves a satisfactory rate of penetration (ROP) in wells [97], managing to suspend weight material
under a variety of conditions. The fluid must have an excellent thermal stability with extreme pressure
consistency so that it poses little or no alteration to the formation to ensure hole integrity and wellbore
stability [98].

4. Designing Drilling Fluid for HPHT Environment

High pressure and high temperature well drilling process is challenging and required robust
drilling fluid program. Conventional drilling fluids additives in particular cellulosic polymer, and
high concentration of KCl, may rise instable rheological properties. Bern et al. [99] stated that there are
many interdependencies within the rheological and hydraulic area of drilling bit. However, they note
the important criteria in selecting base drilling fluid for HPHT operations as being: (1) environmental
impacts, (2) the stability at high pressure and temperature, and (3) minimum rheology to minimize
ECD and reduce the frictional pressure loss [4].

Followings are several points-to-ponder when selecting drilling fluid system for the HPHT
environment, which include:

(1) Narrow drilling operating window vs. high density of HPHT drilling fluid. The importance of
balancing the need for thin, low incremental pressure fluid without creating problem of poor
solids support (settling of conventional weighting materials). Moreover, high density drilling
fluids may plug nano-pores in unconventional reservoirs in particular shale.

(2) Thermal stability of fluid products and system. Destabilization of products, and aggressive and
rapid reactions towards any contaminants in the system will occur when products reach their
operating condition limits.

(3) Technical performance of the fluid for HPHT environment should be placed as a main priority,
not cost, as the margin for error in HPHT environment is very small, causing whole operation fail
with underperformance of drilling fluid.

(4) The fluid and additives should not only be stable at high temperature but must also withstand
the maximum expected time under the most extreme conditions anticipated.

(5) For HPHT operations, rigorous planning thorough laboratory work, detailed drilling, and well
and drilling fluid programs becomes more critical, where it is important to prepare backup plans.

(6) Every HPHT well is unique; thus, a specific drilling fluid design may only work for
a particular well.

More importantly, the drilling fluid weight window becomes more critical when drilling with
a managed pressure drilling plan. The hydrostatic pressure of the drilling fluid is controlled with
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the density of the drilling fluid. Thus, hydrostatic pressure could be lower compared to pore pressure
according to the availability of equivalent circulation density [100].

5. Selection of HPHT Base Drilling Fluid

The three elements which usually determine the type of fluid selected for a specific well are
cost, technical performance, and environmental impact. Some aspects of technical performance are
measured based on drilling ability with certain formation type (e.g., shale formation, rock salt, etc.),
operating pressure and temperature, and hole condition (e.g., hole inclination, hole stability, etc.).

Oil-based drilling fluid is normally chosen for HPHT drilling as a means of tackling high
temperature conditions because it is stable to at least 450 ◦F in 16-h laboratory tests [101], it typically
exhibits a lower coefficient of friction, and it provides a thinner and more lubricious filter cake [102].
Some drawbacks of OBDF are: (1) high cost, (2) influence on logging interpretation, (3) OBDF can
absorb a large amount of gas, (4) environmental issues, and (5) the thermal expansion of OBDF is
higher than WBDF, which can lead to pressurization of the annulus [95,101]. For example, invert
emulsion system drilling fluid is environmental friendly and it has better thermal stability (up to
478 K); thus, it can be used to drill HPHT wells [103].

Synthetic-based drilling fluid for HPHT drilling operation is another option to replace OBDF since
it is biodegradable and has low toxicity, i.e., environment acceptance of any waste generated including
drilling cuttings. It exhibits thermal stability of up to 475 K [104], and eliminates gas solubility effects.
The overall performance of synthetic based drilling fluid (SBDF) depends on the selection of the right
combination of drilling fluid additives; for example, the selection of an emulsifier to give an overall
emulsion stability [102]. Witthayapanyanon et al. [105] have developed a new flat rheology SBDF in
which the formulation had been simplified to one emulsifier and one rheology modifier, where it can
be combined with micronized barite technology that is suitable not only for HPHT application but also
for narrow margin extended reach drilling. In Malaysia, a dual-weighted SBDF (barite and manganese
tetraoxide) was formulated for the first ultra-HPHT, deep-gas well offshore with thermal stability of
508 K.

In water-sensitive rocks, the risk and costs of OBDF prompt operators to commonly choose
WBDF [106]. However, WBDF are also likely to cause formation damage, hydration, and disintegration
of cuttings, as well as possessing wellbore stability issues. These are all due to pore pressure elevation
and thermal instability required for the drilling fluid system. Moreover, this can be adjusted with
special additives to provide superior drilling hydraulics, rheology, thermal stability, lubricity, and shale
stabilization [107]. However in some cases, WBDF has been shown to be needed for borehole logging
due to its small resistivity, which reduces the amount of interference [108]. Extensive laboratory studies
have shown multiple utilizations of WBDF for HPHT. For example, an experiment conducted by
Tehrani et al. [107] developed a WBDF that can be used at temperature up to 453 K by using the right
combination of weight material and selected polymers to produce a stable, controllable rheology, and
good inhibitive and lubricating properties. Sun et al. [88] have emphasized the importance of clay in
HT WBDF systems, where a water-based organosilicon drilling fluid system ODFS-III was developed
with good thermal stability up to 493 K, inhibitive properties, and cutting–carrying capacity that caters
to the need of Xushen 22 HT Deep Gas Well in China.

Gao et al. [4] have stated that base fluids with lowest viscosity, such as brine value, should be
chosen, as viscosity of base fluids is considered detrimental. Examples of brines used in many HPHT
wells are sodium formate, potassium formate, and cesium formate. These types of WBDF had been
successfully applied in HPHT wells; for example, cesium formate has been used to drill 29 HPHT wells
in the North Sea [95].

6. HPHT Drilling Fluid Formulation

Drilling fluid formulation is engineered to drill challenging HPHT zones [109]. OBDF has been
used to drill HPHT wellbores due to its enhanced thermal stability [110]; nonetheless, toxicity and
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sodium bentonite improved the viscous model of drilling fluid after hot rolling. This progress was
attributed with heat resistant behavior of the nanoparticles [124] as shown in Figure 3.
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Figure 3. Changes in the viscous modulus (G’) due to strain of manganese aluminum silicate
nanoparticles and sodium bentonite (a) before, and (b) after, hot rolling. The G’ of different suspension
stabilized below 0.2 Pa at a high oscillatory strain (100%) and G’ increased at a low oscillatory strain
(0.1%) resulting recovery of gel strength. The gel strength recovery performance increased before hot
rolling; moreover, after hot rolling, the gel recovery performance of nanoparticles suspension was
better compared to Na-BT suspension. Reproduced with permission from [124].

The viscosity of the polymer-based drilling fluid system was enhanced with the addition of
SiC nanoparticles [125]. Degradation of polymer decompensate by SiC nanoparticles, polymer
solution resulted in 36% degradation with the SiC nanoparticles displaying 15% degradation; therefore,
the viscosity improved where it was measured using the Herschell–Buckley (HB) model fitting.
The effect of shear stress on the viscosity of SCi nanoparticles added drilling fluids were predicted by
using following equation,

Ysic = A1 exp(-X/t1) + Y0 (1)

Whereas, Ysci is viscosity of the nanomaterial added drilling fluid and X is shear stress influencing
the viscosity. Moreover, (-1/t1) term in the Equation (1) described exponential decline in the viscosity
with increase in shear stress. Thus, it could be explained that with an increase in stress (s-1) the viscosity
of drilling fluid is reduced; however, viscosity was found greater compared to that of the viscosity of
basic drilling fluid using similar shear stress inputs. Additionally, data plotted using the HB model
displayed the same trend.

More recently, Medhi et al. [126] investigated the viscous behavior of zirconia nanoparticles into
drilling fluid at different temperature and found that viscosity of drilling fluid improved after addition
of the nanoparticles. However, viscosity of the drilling fluid generally reduced with temperature.

The degradation of the polymer was also caused by oxidation. Upon heating, the solution polymer
broke apart and reduced molecular weight [125,127].The plastic viscosity and yield point of hydrophilic
gilsonite nanoparticle (HGN) based drilling fluid were measured and it was observed that long chains
of HGN increased the viscosity of drilling fluid [128]. Moreover, better dispersion of HGN increased
the mechanical friction between the particles holding electric charges where there was an increase
in the plastic viscosity of the drilling fluid system as displayed in Table 2. The yield point of HGN
based drilling fluid in particular was improved after hot rolling. This progress was attributed to
the polymeric characteristics of drilling fluid inhibited using the HGN material, which has high heat
resistant properties. Therefore, the material sustained the gel and yield strength of the drilling fluid as
provided in Table 2.
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Table 2. Plastic viscosity and yield point of hydrophilic gilsonite nanoparticles (HGN) before and after
hot rolling at 422 K [128].

Rheological Properties Before Hot Rolling After Hot Rolling

Plastic viscosity (mPa.s) Basic mud: 23
Nano mud: 27

Basic mud: 21
Nano mud: 17

Yield point (Pa) Basic mud: 15.3
Nano mud: 4.6

Basic mud: 14.8
Nano mud: 10.2

7.4. HPHT Fluid-Loss Additives

A filter cake formed from drilling fluid stabilizes the formation face but undergoes consolidation
due to applied pressure and temperature. The applied pressure and temperature will expel the fluid
from the cake and result in fluid loss into the geological formation [129,130]. This case is worsened
within the HPHT environment, where, if using conventional fluid loss additives, either they can be too
soluble and become detrimental to other fluid properties when their thermal limit is exceeded, or they
can degrade at high temperature and lose their fluid control properties [31].

Stefano et al. [118] and Mettath et al. [131] have suggested several HPHT fluid loss additives
for invert emulsion systems: (1) development of thermally-stable, organically-modified tanning and
amine-treated lignite; and (2) development of low molecular weight polymeric materials that are
thermally stable monomer (up to 533 K) and are heavily cross-linked up to 533 K as replacement
for oil-soluble polymeric materials that degraded at high temperature [121]. An example of HPHT
fluid loss additives from source of tannin is a non-asphaltic amine-treated quebracho-based for high
temperature application which has been developed and field-tested; it exhibits thermal stability at
up to 561 K, with minimal formation damage and acceptable environmental impact [131]. More
recently, Sun et al. [132] have found that synthesized zwitterionic polymer brush (NS-DAD) based on
modified nano-silica performed adequately; HPHT filtrate loss volume was reduced to 5.8 mL at high
temperature (423 K), and high salinity environment compared an anionic polymer brush (NS-DA),
a nonionic polymer brush (NS-D), and a cationic brush (NS-DD) additives. The morphology of the filter
cake was smooth, and the size was thin. This progress was attributed to the anti-polyelectrolyte effect
and nano-silica, both in water-based drilling fluid and high salt contained water-based drilling fluid.
API filtrate loss volume data and certain types of polymer brushes at different wt% data were used to
generate the equations as provided into Table 3.

Table 3. Regression analysis of API filtrate loss of water-based drilling fluid system (WBDF) after
adding different types of polymer [132].

Polymer Brush Added WBDF API Filtrate Loss Equation Adjusted R2

Nonionic polymer (NS-D) YAPI filtrate loss = 1.38Xwt% + 9.95 0.89

Anionic polymer (NS-DA), YAPI filtrate loss = 1.21X wt% + 9.29 0.89
cationic polymer (NS-DD), YAPI filtrate loss = 1.07X wt% + 6.45 0.91

Zwitterionic polymer (NS-DAD) YAPI filtrate loss = 0.17X wt% + 1.90 0.91

Whereas, Y is API filtrate loss and dependent variable, and X is wt % of the primary additive
and independent variable, the slope of equations reveals that API filtrate loss was high while using
nonionic polymer brush (NS-D) in the drilling fluid; however, the loss linearly went down using NS-D,
and NS-DD. The least slope or increment in the filtrate loss interval was found using NS-DAD in
the drilling fluid.

7.5. HPHT Shale Inhibitor

A shale inhibitor with efficient performance at high temperature is required for shale reservoirs
and intervals. High smectite content shale swelled rapidly upon contact with water vapor. Thus,
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temperature resistant polymer and heat transfer materials could improve the performance of
shale drilling.

More recently, the Woodford shale has 31% clay content (i.e., illite, chlorite, and kaolinite), but
the shale lacked in the most swelling clay (i.e., smectite), where the median pore size of shale pores was
112.84 nm divided into: meso-pores (2–50 nm), macro-pores (>50 nm), nano-material such as SiO2 (size
15 nm to 20 nm), and GNP (1.3–2.3 um and thickness 3 nm). The Woodford shale was used to bridge
pores and aligned with the Abrams bridging rule which states that size of bridging material should be
equal to one-third pore size or it may be slightly greater than the one-third of the pore to form efficient
plugging (Table 4); thus, nanomaterials improved shale inhibition. SiO2 and graphene nano-platelets
improved the retention of mass into shale and decreased shale erosion by 35% in comparison to base
fluid. Nanoparticles improved the coating on the shale and, therefore, reduced their dispersion into
the fluid system [133].

Table 4. Dispersion (%) of Woodford shale in different fluids [133].

Fluids Woodford Shale Dispersion (%)

Water 22.03
Base fluid 17.44

Base fluid+2 wt% graphite 15.76
NP-WBDF a 11.23
a NP-WBDF = nano-particle water based drilling fluid.

Shale recovery percent was investigated into deionized water, KCl, and Oligo (poly-L-lysine)
solution. The shale recovery percent of KCl and deionized water were 7% and 13%, respectively,
compared to 1 wt% of Oligo (poly-L-lysine), which displayed 59 wt%. The excellent progress was
attributed to the synergetic effect of montmorillonite crystalline inhibition and reducing the diffuse
double layer repulsion [134] (Table 5).

Table 5. Recovery percent of nanomaterial based drilling was found higher compared to water and
KCl (different concentrations) at 393 K [134].

Fluids Shale Recovery (%)

Deionized water 13.6
1% KCl a 17.8
3%KCl 19.4
5% KCl 21.5
7% KCl 22.6

1% Oligo (poly-L-lysine) 59.4
3% Oligo (poly-L-lysine) 66.8

a KCl = potassium chloride.

8. Field Cases

In this campaign, low toxicity oil-drilling fluid was chosen as the drilling fluid, considering
the environment acceptance of any waste generated including drilling cuttings. Another advantage of
selecting this type of drilling fluid was the elimination of gas solubility effects. Barite was selected
as primary weighting agent in this drilling fluid. Due to deteriorating rheology and barite sag [135],
hematite was chosen to replace it. Hematite, in the mineral form of ferric oxide, was abrasive and
caused significant wear and tear in the surface and downhole equipment. In this case, the abrasiveness
severely affected the poppet valve in MWD equipment to the extent that the manufacturing components
had to be made of solid carbide rather than providing a carbine coating only. Geology, HPHT range,
reservoir depth, and reservoir saturation of Kristin field, Raudhatain field, Qiongdongnan field, and
Krishna Godavari Basin are provided in (Table 6).
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Table 6. Geology and reservoir saturation of high pressure high temperature (HPHT) fields.

Parameters Kristin Field
(Norway) [136]

Raudhatain Field
(Kuwait) [137]

Qiongdongnan Basin
(China) [138]

Krishna Godavari
Basin (India) [139]

Geology Jurrasic Garn, Ile, and
Tofte formations

Lower Mesozoic
and Paleozoic

horizons

fan-delta sandstones
(Lingshui formation)

Lower cretaceous
formation

HPHT a

range 91 MPa bar and 443 K 69 MPa and 548 K 502–513 K, 103–137 MPa 483 K and 82 MPa

Reservoir
depth 4600–4850 m 5792 m 4000 to 5000 m 5000 m

Reservoir
saturation

Gas found in three
variable formations Jurassic sour gas Gas Gas

a HPHT = high pressure high temperature.

8.1. Kristin Field Development, 2006 (Norway)

The case study of Kristin field was under the scope of this study because this field has several
HPHT wells. The drilling program required thermally and rheologically stable drilling fluids. Thus,
there are three drilling fluid types which are used in the oil and gas wells reservoir drilling: (1)
cesium/potassium formate clear brine system [140,141], (2) invert emulsion HPHT OBDF [142], and (3)
invert emulsion HPHT OBDF with micronized barite slurries (MBS) [143].

Ten wells that were to be completed with liner and perforation in underbalanced drilling operations
used HPHT OBDF as drilling fluid at 8 1

2 ” section. Similarly, two other open hole and screen wells used
carboxylic acids and the acidity of the OH bond (Cs/K-COOH) as drilling fluid. In brief, Cs/K-COOH
was chosen as the drilling fluid to meet the objective of well completion strategy to screen all wells, as
based on Statoil experience with this type of drilling fluid. This solids-free drilling fluid has many
advantages including reduction of the risk of the formation damage. HPHT OBDF invert emulsion
was chosen as drilling fluid to at 12 1

4 ” sections to encounter washout that occurred in the shale section
when drilling with Cs/K-COOH. The HPHT OBDF invert emulsion was chosen as the best option
for high angle reservoir sections. The third type of drilling fluid, an invert emulsion OBDF with
micronized barite slurries (MBS) as weighting agent, was selected as reservoir drilling fluid to counter
the danger of plugging screens for open holes. The particle size distribution of MBS, which consists
of micron size (D50 of 2 micrometer) and coatings (to prevent interaction between particles), helped
to reduce the risk of plugging screens compared to the conventional barite observed in Kristin field,
Norway HPHT wells. Figure 4 gives the location of Kristin field.

One of the wells, named ‘Well I’, was the first well to be drilled and completed (with screens)
using the invert emulsion HPHT OBDF with MBS. A 290 m long section with approximately 35 degree
inclination of 8 1

2 ” was drilled using one bit run, where it was the fastest 8 1
2 ” section drilled on Kristin

field. Well J was drilled soon after Well I was completed. Well J with inclination of 60–70◦ through
the reservoir and the total section length of 740 m was drilled with 7 bit runs. 6 bits were found
plugged with barite (after analyses was done) on the nozzles and/or waterways, causing poor ROP
throughout the section. The drilling fluid specification drifted out from the programmed specification
due to water contamination. More time was needed to regain the drilling fluid specification, since
the fluid is weighted up using concentrated slurry with MBS. Another advantage of using this drilling
fluid is its stability. It was shown that after 12 days the reservoir remained in equilibrium against
surface controlled subsurface safety valve (SCSSV) flapper and when the SCSSV was opened there was
no indication of any slipped gas or signs that the drilling fluid was deteriorating.
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8.2. Raudhatain Field Development, 2013 (Kuwait)

Drilling fluids selection was planned to control formation stability, pore pressure, and complicated
geology in Raudhatian field. The OBDF was used to drill HPHT in the field and density of drilling
fluid was controlled between 2228.8 kg/m3 to 2348.6 kg/m3. Moreover, plastic viscosity of the drilling
was maintained between 40 to 60 pa [137]. Additionally, the main challenge was to obtain quality of
log which failed (particularly for Image logs and Nuclear logs) as they were affected by underground
downhole conditions produced from OBDF in the Raudhatain field.

Later, a WBDF prepared with saturated potassium formate brine along with manganese tetra-oxide
was selected to replace OBDF. It was chosen based on the requirement of drilling fluid and criterion
provided by saturated potassium formate brine weighted with manganese tetra-oxide (Table 7).
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Table 7. Requirement of drilling fluid and weighting agent vs. criterion provided by saturated
potassium-formate brine weighted with manganese tetra-oxide.

Requirements of Drilling Fluid System Criterions of Saturated Potassium-Formate Brine Weighted
with Manganese Tetra-Oxide

Fluid must perform well with acceptable rheology
and fluid loss at temperature up to 422 K. • Robust behavior in HPHT environment.

• Water insoluble, partially acid soluble, dispersible
weighting material with ideal properties for providing
higher base-fluid density [108].

• Non-damaging nature—less solid-loaded fluids
compared to barite.

• Partial solubilization of barium sulphate can occur if
the density of potassium formate solutions above 1.30 SG,
reacting with barite. This soluble barium can reach 2
kg/m3, which can be toxic [108,145]

• Manganese tetra-oxide is harder than barite but less
abrasive, reducing interaction between
the particle-to-particle [108]

Must be capable of replacing OBDF a with
the same (or better) drilling fluid weight, solid
loading, fluid loss and rheology, stable as OBDF,
and provide better quality logs.

Must exhibit the best HPHT b filtrate with
the lowest spurt (some fractured limestone zones
were expected).

Must aid in logging operation.

• Having the advantage of reduced resistivity, which
creates borehole environmental condition for
the possibility of better quality image logs. Manganese
tetra-oxide will not interfere with log responses like
hematite [108].

a OBDF = oil based drilling fluid. b HPHT = high pressure high temperature.

There were no signs of settling of weight material proven when the drilling fluid was left in static
conditions for three days, where the drilling fluid losses were low and ROP was very high comparable
to those from wells drilled with OBDF. Further, there was no hole-cleaning problems arising and plastic
viscosity did not rise significantly, which contributed to low ECD and acceptable pump pressures.
The logging data were improved when using potassium formate with manganese tetra-oxide fluid.
The fluid system allowed better image logs to be obtained as compared to previous quality data log
using OBDF.

Amongst all HPHT challenges (Table 8), some are directly related to drilling fluids and performance,
where HPHT wells with poor cemented sand, and presence of unconsolidated formation, may cause
loss of circulation problems.

Table 8. An overview of HPHT unconventional reservoir challenges and research gaps.

HPHT Challenges Research Gaps Identified

Shale instability [146,147], geo-pressure detection
[2,148], integrated team of operator, engineers
and well technologist [100], new technologies
adoption [149], well point and location [150],
material selection and sustainability [151], HPHT
a corrosion [12,152,153], HPHT instrumentation
gauges [154,155], well completion and well
control [135,154], and unconsolidated formation
[156].

Drilling fluids

• Areas: Tuned with heat transfer characteristics colloidal
or nanoparticles.

• Nano-polymer composite improved the properties and
shale stability and coating).

Casings

• Enhanced metallurgy, composite material with
anti-corrosion behavior.

Well testing

• Seals and safety measures.
• Mature basin HPHT opportunities.

a HPHT = high pressure high temperature.
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8.3. Qiongdongnan Basin

The selection criteria of drilling fluid systems in Qiongdongnan basin are given in Table 9, where
the location of the basin is illustrated in Figure 5. The drilling operation at 14 3

4 ” section was as per
the drilling plan with only a few drilling fluid-related problems. The interval was completed with less
than half of the programmed dilution rate using the solid removal equipment. The same drilling fluid
system was used for 12 1

4 ” section. The temperature at bottom hole was expected to reach 482 K.

Table 9. Drilling fluid and its applications in 14 3
4 ” and 12 1

4 ” sections.

Drilling Fluid Based 14 3
4 ” and 12 1

4 ” Sections

Drilling Fluids Applications

HT Glycol-Polymer WBDF a To encounter high temperature that reached up to 458 ◦K

Selection of Additives at 14 3
4 ”and 12 1

4 ”Sections

Drilling Fluids Applications

Glycol Shale stability and secondary lubrication properties.

Wyoming Bentonite Provide initial viscosity, use with small concentrations
together with deflocculant to prevent the gel strengths.

Polysulphonate, Sulphonated Asphalt,
Synthetic Polymer Resin/Lignite Derivative

Blends
Fluid-loss control and filter cake properties.

Calcium Sulphate (gypsum)
Soluble calcium source to minimize the result of

carbonate/bicarbonate contamination over gelation, and
use with small concentrations.

Potassium Chloride Potassium ion source for shale inhibition.

Organic Amine Stabiliser of polymer temperature (to expand the thermal
stability of starch, cellulose, and biopolymers).

a WBDF = water based drilling fluid.
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The decision to use a high temperature glycol-polymer WBDF instead of the initially planned
synthetic-based drilling fluid yielded significant advantages which included: (1) reduction of
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consequences of loss circulation and brine flows; (2) effective cementation for 9” liner; (3) no spacer
and cement contamination of SBDF, if SBDF was used to drill 12 1

4 ” hole interval; and (4) the SBDF to
be used at 8 1

2 ” section was in better condition containing less drill solids since it was only used in
this section.

The drilling was continued at the critical section of 8 1
2 ” section using clean SBDF. The drilling

fluid and its additive information are provided into Table 10. Two weighting agents were used for
this section—hematite and manganese tetraoxide in ratio of 90:10. This ratio optimized the packing
arrangement between smaller particles and larger hematite particles. This packing arrangement not
only led to a significant reduction in solids content but also provided significant rheological property
improvements for use in HPHT conditions. Moreover, the formulation could help to reduce sagging
and abrasion properties. Accounting for the abrasive nature of hematite, fine particle sized hematite
was chosen, and abrasion testing was conducted in comparison to barite. The results proved that
fine-grade hematite had a similar level of abrasion as API barite at the same drilling fluid weight. Later,
further larger-scale confirmation testing was conducted with the result concluding that the abrasive
characteristics of the fluid was not worse than the conventional API barite weighted fluid.

Table 10. Drilling fluids and its function for the drilling of 8 1
2 ” wellbore section.

Drilling Fluid Based 8 1
2 ”Section

Drilling Fluids Applications

Synthetic Based Drilling Fluid
(Linear alpha olefin system)

To encounter high temperature, and for stable fluid
properties, and where environmental acceptability

is demanded.

Selection of Additives at 8 1
2 ”Section

Drilling Fluids Applications

Fine particle size of hematite (D50 of 5 microns,
SG 5.1 gm/cm3) with Manganese Tetraoxide (D50

of 2 microns, SG 4.9 gm/cm3)
Weighting agent.

Sodium Chloride As internal brine phase that can reduce sag
tendencies.

High temperature polyamide derivative
emulsifier Primary emulsifier, acting as secondary fluid loss.

Lignite derivative Primary fluid loss control.

High temperature organophilic clay Rheology control on viscosity.

Potassium Chloride Potassium source ion for shale inhibition.

Other (as contingency) Deflocculants and additives to manage
the rheological properties and low shear rate.

HPHT testing was also conducted offshore to ensure that the fluid was stable under simulated
downhole conditions. A five-day test was finished successfully, which took place after the initial
synthetic–water ratio was adjusted from 93/7 to 70/30 due to operational and logistic limitations.
The fluid was again tested in a portable drilling fluid laboratory (that installed on the rig) to ensure
the ratio re-adjustment fluid properties were within specification and would not jeopardize the operation.
With confirmation from the test, the high temperature WBDF was replaced successfully without a spacer
and the drilling operation continued smoothly. However, due to a typhoon, the drilling fluid had to
stay static in downhole for eight and a half days and when the drilling resumed there was no evident
signs of too much gelation or weight material sag. A full suite of logs was run without incident, where
the section was then smoothly drilled to the total depth with an estimated downhole temperature of
485 K. Drilling fluid cooler was used to minimize the bottom hole temperature.
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8.4. Field Cases 2: Drilling Fluid System Selection for HPHT Krishna Godavari Basin

A 12 1
4 ” section was drilled using WBDF with KCl and enhanced polyglycol system, except for in

Well D. The selection of drilling fluid systems can be found in Table 11.

Table 11. Selection of Drilling Fluids and Additives at 12 1
4 ”.

Drilling Fluid Based at 12 1
4 ” Section

Drilling Fluids Applications

Well A, B, and C: KCl a-polyglycol
WBDF b Counter clay swelling-promote shale stability.

Well D:Synthetic OBDF c
Biodegradable and less toxic than OBDF, base viscosity is
higher than OBDF at normal condition, provide good hole

gauge, and good environment for logging

Selection of Additives at 12 1
4 ” Section

Drilling Fluids Applications

Enhanced polyglycol Shale stability, and cloud out at high temperatures preventing
hydration of shale.

Pre-gelatined starch Fluid loss control (used below 240 ◦F).

Sulfonated organic resin

Aids in stabilizing shale sections, controlling solid dispersion
and improving wall cake characteristic, plugs micro-fracture

shale and sealing shale to avoid hydrostatic overbalance
transmitted to the pore pressure network.

Polyanionic cellulose (PAC) Fluid-loss control properties, shale inhibition, and salt
tolerance.

a KCl = potassium chloride. b WBDF = water based drilling fluid. c OBDF = oil based drilling fluid.

Even though many additives were added to the WBDF in 12 1
4 ”, clay hydration and inhibition

drilling in this section led to problems like low ROP, hole cleaning problems due to caving in the wellbore,
wellbore fill, stuck pipe, bit balling, and high torque values damaging top drive systems; all of which
were caused by the swelling of clay due to hydration. The same problems were encountered in the 8 1

2 ”
section using WBDF. The list of drilling fluids and additives used in drilling of 8 1

2 ” section is provided
in Table 12. However, in response to learnings from the previous drilled well, SBDF was chosen where
the clay hydration in shale were alleviated at 8 1

2 ” section for Well C. SBDF was also chosen in drilling
the 12 1

4 ” and 8 1
2 ” sections in Well D. This resulted in no clay hydration problems, as SBDF did not

react to the unstable clay.
As the bottom hole temperature reached 483 K, the effects of high temperature and pressure

started to emerge, e.g., (1) damage on elastomeric property of drilling fluid motor, (2) a continuous
circulation of drilling fluid required to cool LWD and MWD tools to enable them to function properly,
and (3) gelation issue with WBDF. The low gravity solid that occurred which increased viscosity due to
clays and drilling fluid, had to be diluted and sheared to reduce fluid loss at the shaker and flow line. A
drilling fluid cooler was also required to cool the drilling fluid because of the very high temperatures.
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Table 12. Selection of drilling fluids and additives at 8 1
2 ” sections.

Drilling Fluid Based at 8 1
2 ” Section

Drilling Fluids Applications

Well A, B: Low colloid,
contaminant-resistant WBDF a for

HPHT b

Providing good inhibition, minimize clay migration, swelling
and formation damage, delivering high ROP e, improve solids
removal capability, and stable at temperature more than 394 K

Well C, D:Synthetic OBDF c
Biodegradable and less toxic than OBDF, base viscosity is

higher than OBDF at normal condition, provides good hole
gauge, and good environment for logging

Selection of Additives at 8 1
2 ” Section

Drilling Fluids Applications

Oxidized and resinated lignite,
synthetic polymer, pre-hydrated gel Fluid loss control,

Modified tanning compounds,
oxidized and resinated lignite

Curing high temperature gelation, and fluid loss control and
stability.

Glycol and KCl d Clay hydration inhibitor

Modified xanthan gum Viscosifier (but burnt out at 422 K)

Barite Weighting agent

Zinc Carbonate Gas scavenger

Calcium Carbonate (Well B) Reduce torque (lubrication)

Nut Plug Reduce torque

Lime To treat out effects of acid gases.
a WBDF = water based drilling fluid. b HPHT = high pressure high temperature. c OBDF = oil based drilling fluid.
d KCl = potassium chloride. e ROP = rate of penetration.

9. Comparison between Case Studies

In the Brunei Drilling Campaign, the primary weighting agent of barite was replaced with
hematite when the sagging of barite worsened during drilling operation. However, the aggressiveness
of hematite caused damage on surface equipment and bottom hole assembly (BHA). Additional costs
were incurred when the manufacturing components had to be made from solid carbide to withstand
the abrasiveness of hematite. Thus, the usage of hematite was minimized. The problem emphasizes
the importance of quality control with new hematite, where specifying spherical in shape should
be considered.

Kristin field contains gas condensate in three sandstones (lower to Middle Jurassic paralic
sandstones). The average depth of gas condensate reservoir was 4600 m and 4850 m [158]. For Kristin
Development Field, it was decided earlier that the weighting agent would be micron-sized barite (MBS).
This invert emulsion OBDF with MBS provides low ECD and was stable with acceptable formation
damage. In addition, it met the objective to encounter the danger of plugging screens for open hole
sand screens. However, the particles of MBS were found at the nozzles and/or waterways for Well J,
which somehow affected the drilling progress and produced a tendency towards water contamination.

The Kuwait oil company was interested in exploiting the non-associated gas potential from two
different horizons, in particular, the Lower Mesozoic and Paleozoic in Raudhatain field. In starting,
there were four wells drilled until Pre-Khuff formations in developed field areas of Sabriyah, Burgan,
and Umm Gudair. Following the outcomes, gas presence was identified in the Sudair formation and
Unayzah formation. Additionally, free gas shows were strongly indicated while drilling the Mutriba 10
formations [137]. For Raudhatain Field Development, the decision to change the drilling system was
made when the previous drilling fluid system (OBDF), weighted with barite, was unable to assist in
providing high imaging log quality. It was replaced with potassium formate weighted with manganese
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tetra-oxide fluid. The quality of logs (i.e., images) was improved using the manganese tetra-oxide fluid;
however, manganese tetra-oxide fluid is an expensive material. It was also helpful in the evaluation of
oil and gas shows in cutting samples, which added vital information about formation evaluation.

The obvious similarity between these cases was the objective of avoiding severity of sagging barite.
However, the decision made to address this problem was different from case to case. From these three
cases, it can be concluded that: (1) conventional weighting agents (for these cases, barite and hematite)
are not a suitable weighting agent for HPHT environments; (2) using micron-sized barite as weighting
agents can reduce the tendency of barite sagging and meet the completion strategy, but the sizing of
barite must also consider the type of bit to be used to avoid particle plugging of weighting agents; and
(3) changing the drilling fluid required changing the additives in order to meet the drilling objective.
Overall, the selection of additives (in this case weighting agents) was important at the right time and
the right place. This can affect the whole drilling operation and it might cause failure to other objectives
such as logging. The cost of weighting agents may become a factor to be considered, but the bigger
picture of the whole system has to be captured in the way that benefits may offset higher costs.

Moreover, from Case 1, it is clear that there was lack of crucial planning. Wells A, B and C
encountered several problems during drilling and logging operations. With immediate lesson learned
from previous wells, Well D was planned before operation.

From Case 2, the holistic approach taken to carefully plan for HPHT resulted in smooth drilling
and logging operations. The planning and base/laboratory preparation not only produced innovative
drilling fluid specific to the well’s condition, but also led to modifications to rig design to suit
the management of drilling fluid properties at high density with high flow line temperature. This
included a portable drilling fluid laboratory that enabled drilling fluid sample to be continually tested
so that the results could be obtained immediately (no need to send samples to town). Moreover, large
abrasion and pressure tests were also conducted on shore prior to operation.

These two cases show that the drilling planning process involved crucial selection and decision,
which included aspects of the materials, equipment, facilities, and personnel to be adjusted properly
especially in unconventional drilling operation such as HPHT. Another important point is to have
knowledge to predict the worst scenarios that might occur during the operation. Although it may
incur higher initial cost, this whole planning and land/base preparations makes good contributions
towards operations.

10. Conclusions

This review study presented case studies on use of drilling fluids in three different HPHT fields.
Moreover, this study provided comprehensive information on use of drilling fluids additives to drill
different wellbore sections, i.e., 8 1

2 ” and 12 1
2 ” in HPHT environments. However, conventional

drilling fluid additives such as barite and cellulosic polymer raised thermal instability and raise
high solid content problems. Relating to such problems, metal oxide nanomaterials have provided
efficient drilling fluid progress in HPHT environments. During drilling of the 8 1

2 ” section in a well in
Qiongdongnan basin using clean SBDF, two weighting agents were used in the ratio of 90:10 (hematite
and manganese tetroxide) in order to significantly reduce solids reduction and to improve the drilling
process in the HPHT environment. Hence, this optimum ratio improved rheological properties and
reduced solid content. For the techniques/methods, facilities/equipment that can withstand the HPHT
drilling operation must be considered and rigorously planned. From the first case (Kristin field) of
choosing suitable additives, the utilization of additives at the right time and place were important.
The high initial cost of additives vs. their benefits, must be considered wisely. The conventional
weighting agent (in this case barite and hematite) with the same size and packing arrangement should
not be used at all for HPHT. The second case study (Radhatain field) on the overall selection of drilling
fluid system showed that the drilling planning process involved crucial selection and decisions, and any
matters that deviated from plan must be controlled to suit the drilling objective. Selected drilling fluid
must not only be suitable for formation and other operations (testing or logging), but also the condition
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of the drilling fluid (used or fresh/new) at critical sections (HPHT reservoir) can lead to different
results. Raudhatain Field Development, the decision to change the drilling system was made when
the previous drilling fluid system (OBDF), weighted with barite, was unable to assist in providing high
imaging log quality. For Kristin Development Field, it was decided earlier that the weighting agent
would be micron-sized barite (MBS). This invert emulsion OBDF with MBS provides low ECD and
was stable with acceptable formation damage. Moreover, constructing suitable HPHT drilling fluid
systems involves many aspects. Further, it is important that the whole team be knowledgeable and
competent in drilling in HPHT conditions. This can save rig time, avoid cost overruns, avoid fatalities,
and minimize the possibility of failure especially in drilling in HPHT condition.

11. Recommendations

Following recommendations can be drawn from present study:

(1) Tailoring of nanomaterials, chemical structure of polymers and investigation of degradation of
polymer at HPHT conditions are important parameters to improve rheological properties of
HPHT drilling fluids. There is need to examine the rheological and shale inhibition potential of
nanomaterial-based drilling fluid in extreme HPHT environmental conditions i.e., 533 K and 241
MPa. Moreover, it is vital to improve the preparation of drilling fluids so that minimum deviation
between surface and downhole properties could be obtained.

(2) The usage of HPHT drilling fluid additives varied from field to field. However, conventional
drilling fluid additives are not appropriate choice for HPHT fields due to sag problems. Thus,
it is recommended that micron size barite be used to meet operational requirements; moreover,
further tuning of barite particle size can reduce particle plugging and formation damage in
HPHT environments.

(3) OBDF drilling fluids are generally used for HPHT well drilling; however, OBDF may raise overall
cost, logging disturbances, increase environmental issues, and pressurization in annulus. When
compared to OBDF, invert emulsion drilling fluid system and water-based drilling fluid system
are further choices and can modified with metal oxide nanoparticles to improve colloidal stability
and heat transfer behavior.
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Nomenclature

HPHT High pressure high temperature
API American Petroleum Institute
BHA Bottom hole assembly
CMC Carboxymethyl cellulose
D50 Cumulative 50% point of diameter
ECD Equivalent circulation density
FIP Formation integrity pressure
GNP Graphene nano-platelets
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HGN Hydrophilic gilsonite nanoparticle
LWD Logging while drilling
MBD Million barrel per day
MPD Managed pressure drilling
MW Mud weight
MWD Measurement while drilling
NS-D Non-ionic polymer brush
NS-DA Anionic polymer brush
NS-DAD Polymer modified nanosilica
NS-DD Cationic brush
OBDF Oil-based drilling fluid
POOH Pull out of hole
PP Pore pressure
PV Plastic viscosity
RIH Run in hole
ROP Rate of penetration
SBDF Synthetic based drilling fluid
SCSSV Surface-controlled subsurface safety valve
SG Specific gravity
TMB Treated micronized barite
WARP Weighting agent research project
WBDF Water-based drilling fluid
YP Yield point
Kg/m3 Kilogram per meter cube
K Kelvin
MPa Mega Pascal
m3 Meter cube
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