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A B S T R A C T   

Digital camera monitoring is increasingly being used to monitor recreational fisheries. The manual interpretation 
of video imagery can be costly and time consuming. In an a posteriori analysis, we investigated trade-offs between 
the reading cost and accuracy measures of estimates of boat retrievals obtained at various sampling proportions 
for low, moderate and high traffic boat ramps in Western Australia. Simple random sampling, systematic sam-
pling and stratified sampling designs with proportional and weighted allocation were evaluated to assess trade- 
offs in terms of bias, accuracy, precision, coverage rate and cost in estimating the annual total number of 
powerboat retrievals in 10,000 jackknife resampling draws. The relative standard error (RSE ± standard de-
viations) obtained by the sampling designs for sampling proportions from 0.4 onwards were below a 20 % 
threshold for three of the sampling designs across the three boat ramps. Coverage rates of over 90 % were 
observed for the confidence intervals for the estimated annual number of powerboat retrievals, with low relative 
standard errors (RSE < 20 %). Interpreting 40 % of camera footage within a year provided the minimum level to 
obtain sufficient accuracy measures for all sampling designs considered. The stratified random sampling design 
with weighted allocation consistently resulted in the smallest variance for estimates of annual powerboat re-
trievals across the various sampled proportions. These findings have the potential to considerably reduce the cost 
of manual data interpretation, since operating cost increased linearly with increasing sampling proportion.   

1. Introduction 

Recreational fisheries typically occur over large spatial areas, and 
activities are subject to considerable temporal variation (Flynn et al., 
2018). Managers require robust surveys to provide reliable estimates of 
fishing effort and catch levels. The use of digital camera (also referred to 
as remote camera) monitoring is increasingly being used to monitor 
recreational fisheries. Digital camera monitoring capabilities extend 
beyond short-term on-site surveys (Hartill et al., 2019; Smallwood et al., 
2012), providing the opportunity to obtain reliable estimates of effort 
and complementary information to assist with the estimation of recre-
ational catch (Hartill et al., 2016; Taylor et al., 2018a; van Poorten et al., 
2015). As estimates of fishing effort are obtained from the counts of 
boats or fishers identifiable in the camera footage, it is necessary to 
adjust for non-fishing activity (Taylor et al., 2018a) or fishing activity 
that occurs outside the camera’s field of view (Hartill et al., 2019; Stahr 
and Knudsen, 2018; van Poorten et al., 2015). Therefore, digital camera 

monitoring is increasingly being used in conjunction with on-site sur-
veys to address fishery-specific management objectives (Hartill et al., 
2019; Taylor et al., 2018b). 

Manual interpretation of camera data requires budgets that can be 
substantial, particularly when cameras are used across multiple sites 
(Smallwood et al., 2012; Steffe et al., 2017). The largest cost in existing 
digital camera surveys relates to the manual interpretation of camera 
footage (Hartill et al., 2019). Thus, in managing the utility of digital 
camera monitoring, the sampling strategy for reading camera footage 
needs to reflect budgetary constraints and survey objectives (Steffe 
et al., 2017). Standard operating procedures have been established for 
remote camera surveys, ranging from the reading of a full 12-months of 
camera data during supplementary access point surveys through to 
low-level monitoring schemes (Steffe et al., 2017). Low-level monitoring 
schemes ultimately reduce the cost of manual interpretation for digital 
camera surveys of recreational fishing (Hartill et al., 2016). However, it 
is not currently known how the accuracy measures of estimates of 

* Corresponding author. 
E-mail address: e.afrifayamoah@ecu.edu.au (E. Afrifa-Yamoah).  

Contents lists available at ScienceDirect 

Fisheries Research 

journal homepage: www.elsevier.com/locate/fishres 

https://doi.org/10.1016/j.fishres.2020.105757 
Received 3 July 2020; Received in revised form 15 September 2020; Accepted 16 September 2020   

mailto:e.afrifayamoah@ecu.edu.au
www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
https://doi.org/10.1016/j.fishres.2020.105757
https://doi.org/10.1016/j.fishres.2020.105757
https://doi.org/10.1016/j.fishres.2020.105757
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2020.105757&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Fisheries Research 233 (2021) 105757

2

boating effort (here defined as the number of powerboat retrievals) 
obtained from the various sampling schemes compare to actual counts 
obtained from reading all recorded camera footage. In effect, investi-
gating the cost-accuracy trade-off could provide evidence-based guide-
lines by quantifying the relationships between estimates, cost and 
sampling proportions. 

The application of sampling techniques is widespread in different 
research areas including fisheries surveys (Hartill et al., 2016; Kimura 
and Somerton, 2006; Yu et al., 2012). The majority of published digital 
camera studies of recreational fisheries have used some form of stratified 
random sampling (Table 1). For example, Hartill et al. (2016) deter-
mined an appropriate sample size allocation using a stratified random 
sampling design for camera data obtained from monitoring boat traffic 
at multiple ramps in New Zealand. However, the performance of strat-
ified random sampling in relation to other types of design has not 
received much attention. Therefore, it remains largely unknown 
whether other types of design would be more suitable for digital camera 
studies. 

In Western Australia, there is a network of 28 cameras monitoring 30 

fields of view along a coastal stretch of 12,889 km (Hartill et al., 2019). 
Total expenditure of reading camera footage extends into the tens of 
thousands of dollars (Steffe et al., 2017). In addition, the levels of 
boating traffic vary markedly among those locations monitored by 
digital cameras. We investigated the trade-offs between the cost of 
manually reading camera data and accuracy measures of sampled data, 
illustrated through three sets of camera data in Western Australia. The 
study design was an a posteriori study, implying that the findings were 
based on existing monitoring information on recreational boating effort. 
We assessed and compared different sampling designs for a ‘low’, ‘me-
dium’ and ‘high’ use boat ramp, to assist in determining how many days 
of camera footage should be interpreted and the associated un-
certainties. Four sampling designs were considered: simple random 
sampling (SRS), systematic sampling (SSRS), stratified random sampling 
with proportional allocation (SRSP), and stratified random sampling 
with weighted allocation (SRSW). The overarching goal was to accu-
rately estimate the average daily number and annual number of 
powerboat retrievals at the three boat ramp locations. Outcomes of this 
work will be used to inform the ongoing reading of camera data for 
Western Australian recreational fishing surveys in addition to the 
growing number of studies using digital cameras. 

2. Materials and methods 

2.1. Study area 

This study focused on digital camera data obtained at three boat 
ramps: Leeuwin and Hillarys in the West Coast Bioregion, and Denham 
in the Gascoyne Coast Bioregion (Fig. 1). Boating traffic at the three 
ramps selected generally reflects the varying magnitudes and different 
patterns of boating traffic at ramps in Western Australia (WA). Denham 
is a low use ramp, Leeuwin, a medium use ramp and Hillarys represents 
a high use ramp. The analysis of data from these ramps was also influ-
enced by the need for ongoing recreational fishing surveys at these lo-
cations (Taylor et al., 2018b). In particular, the Leeuwin ramp was 
chosen because a complete 12-month camera record of powerboat re-
trievals exists (i.e., no outages) for the period in which the 2011− 12 
state-wide survey of boat-based fishing was conducted (Afrifa-Yamoah 
et al., 2020b; Ryan et al., 2013). Cameras have been positioned to ensure 
100 % coverage of boating traffic at each field of view and operate for 24 
h daily. At Hillarys, information on boat movements is recorded when 
the boats pass a line between two fixed points adjacent to the boat ramp, 
whilst at Denham and Leeuwin the times at which boats return to the 
ramps are recorded (Blight and Stuart, 2015). The type of vessel 
retrieved was recorded as either commercial, powerboat, jet-ski, kayak 
or other (e.g., government vessel). The current study focused on pow-
erboats, being the most common vessel type used for boat-based recre-
ational activity in WA. 

2.2. Data collection and treatment 

The primary sampling unit in this study was calendar day. Camera 
data collected from three digital cameras were used (Fig. 1). Durations 
of camera footage analysed were 1 March 2011 to 29 February 2012 (a 
leap year) for the Leeuwin boat ramp, 1 May 2013 to 30 April 2014 for 
the Denham boat ramp and 1 September 2015 to 31 August 2016 (a leap 
year) for the Hillarys boat ramp. These time periods coincided with 
state-wide surveys of boat-based fishing (Ryan et al., 2013, 2015, 2017). 
All available camera data had previously been manually interpreted for 
the 12-month periods at each ramp. There were instances of missing 
data in the camera records for two ramps; 8% of all available minutes for 
Denham and 24 % for Hillarys. Using climatic and temporal variables as 
covariates, missing observations were imputed using the methods 
described in Afrifa-Yamoah et al., 2020a. The counts of powerboat re-
trievals recorded from camera footage during these 12-month periods 
were used to assess bias, precision and accuracy in a sensitivity analysis. 

Table 1 
Summary of the sampling design and sampling fractions used for digital camera 
studies on recreational fisheries.  

Field of 
view 

Sampling 
design 

Study 
duration 

Primary 
sampling 
unit 

Sampling 
fraction 

Reference 

Boat 
ramps 

Stratified 
random 
sampling 

25th Dec 
2004 – 
24th Dec 
2005 

24-h day ~18 % Hartill et al. 
(2016) 

Artificial 
reef 

Stratified 
random 
sampling 

730 days 24-h day ~32 % Keller et al. 
(2016) 

Foreshore Stratified 
random 
sampling 

Mar 
2015 – 
Feb 
2016 

24-h day ~ 32 % Taylor et al. 
(2018a, 
2018b) 

Boat 
ramp 

Stratification 
sampling 
schemes; 
(a) Random 
whole days 
(b) Random 
hours 
(c) Targeted 
random hours 
with 
systematic 
camera 
imaging 

Oct 
2014 – 
Sep 
2015 

Varied 
(day and 
hour)  

Hamer et al. 
(2019) 

Artificial 
reef 

Systematic 
sampling (~ 
60 s period) 

26th Jan- 
14th Feb 
2015 

24-h day 90 % Wood et al. 
(2016) 

Offshore Systematic 
sampling 
(~93-min) 

1 May – 
30 Jun 
2015 

Daylight 
hours  

Flynn et al. 
(2018) 

Jetties Temporal 
stratification 

Jul – Sep 
2007 

24-h day 100 % Ames and 
Schindler 
(2009) 

Groynes Temporal 
stratification 

Apr – 
Jun 
2010 

24-h day 100 % Smallwood 
et al. 
(2012) 

Lakes Temporal 
stratification 

2009 – 
2011  

91 lake- 
years 

van Poorten 
et al. 
(2015) 

River 
estuary 

Temporal 
stratification 

May-Sep 
2016 

24-h day 100 % Edwards 
and 
Schindler 
(2017) 

Boat 
ramp 

Temporal 
stratification 

Dec 
2015 – 
May 
2016 

Daylight 
(every 5 
s) 

100 % Stahr and 
Knudsen 
(2018)  
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2.3. Sampling units and monitoring design 

For a finite population of size, we define I = {1,…,N} as the set of 
labels for the units in the population. The binary vector s = (s1,…, sN) ∈

S = {0,1}N such that 

si =

{
1, if unit i is in the sample

0, if unit i is not in the sample  

for all i ∈ I, then corresponds to a subset of selected samples from the 

population drawn without replacement. Then Sn =

{

s ∈ S|
∑

i∈I
si = n

}

,

Fig. 1. Study area showing the locations of the Hillarys (high-use), Leeuwin (medium-use) and Denham (low-use) boat ramps where remote camera data 
were recorded. 
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1 ≤ n ≤ N, denotes the set of all those vectors corresponding to samples 
of size n. A sample design p() thus is a function from support S to ]0, 1]
such that p(s) > 0 for all s ∈ S and 

∑

s∈S

p(s) = 1 (Berger and Tillé, 2009; 

Tillé, 2005). 

2.3.1. Design 1: Simple random sampling design (SRS) 
For a fixed sample size, n, a standard draw-by-draw without 

replacement procedure was performed, where units in the population 
have equal probability of selection. Each sample unit has the probability 
n
N of selection. If the ith unit is selected, it is removed from the popu-
lation. The procedure is repeated n times, with the corresponding sub- 
set of powerboat retrievals, Yi, of the selected units (days) being used 
as the sample. 

2.3.2. Design 2: Systematic sampling design (SSRS) 
To select a fixed sample of size n from N, we determined the quotient, 

k = N
n. A random start, r was chosen between 1 and k, and subsequently 

every kth observation was selected until n samples were obtained. The 
serial numbers of the n samples would be r, r+ k, r+ 2k, ⋯, r+
(n − 1)k. It is important to note the systematic sampling design has a 
minimum support (Pea et al., 2007), which implies the cardinality of the 
sampling space is smaller than the population size and only the set of 
samples have positive probability of selection. Thus, selecting sample 
sizes of 0.5 or more of the population size would lead to repeated 
samples, which would not yield practical results in terms of assessing 
variability in jackknife resamples. As a result, this design was restricted 
to sample sizes of up to 0.4 of the population size. 

Let Yi denote the number of powerboat retrievals on day i, then for a 
fixed n (that is, number of days sampled), the mean and associated 
variance of the number of powerboat retrievals for design 1 and 2 (with 
notations consistent with those used in Lohr, 2010) is given by 

μ̂ =
1
n

∑N

i=1
siYi (1)  

V̂ar(μ̂) =
(

1
n − 1

)
∑N

i=1
si(Yi − μ̂)2 (2) 

The expansion estimators for the total number of powerboat re-
trievals and variability for designs 1 and 2 are obtained as follows; 

̂Total = Nμ̂ (3)  

V̂ar
(

T̂otal
)
= N2

(
1 −

n
N

)
V̂ar(μ̂) (4)  

where 
(

1 − n
N

)
is a finite population correction factor, to correct the 

standard errors of the sample mean from samples obtained without 
replacement, especially for larger sample sizes to the population total, 
accounting for the loss in precision in the variance associated with the 
estimates (Lohr, 2010). 

2.3.3. Stratified random sampling 
The levels of powerboat retrieval counts are strongly influenced by 

seasonal and annual cycles (Desfosses and Beckley, 2015; Smallwood 
et al., 2012) and these temporal factors could influence the sampling 
process. In this study, the survey year was stratified into austral seasons 
(autumn, winter, spring, summer) and day-types (weekdays and week-
end/public holidays), leading to eight post hoc strata (Table 2). 

Let J be the number of strata, Nj, 1 ≤ j ≤ J, the total number of 
units in stratum j, and Yij the count of powerboat retrievals for unit i in 
stratum j, then the estimate for the population average and associated 
variance are obtained by 

μ̂ =
1
N
∑J

j=1
Nj μ̂j (5)  

V̂ar(μ̂) = 1
(N − 1)2

∑J

j=1
N2

j

(
σ̂2

j

nj

)

, (6)  

where μ̂j = 1
nj

∑Nj

i=1
sijYij, σ̂2

j = 1
nj − 1
∑Nj

i=1
sij
(
Yij − μ̂j

)2 and nj is the number of 

samples selected from stratum j. 

2.3.3.1. Design 3: proportional allocation (SRSP). In this sampling 
scheme the number of sampled units in each stratum is proportional to 
the size of the stratum, that is, the number of days in the stratum. For 
example, for a sample proportion of 0.1 in a stratified sampling design, a 
sample size proportional to 0.1 of the total sample size of the stratum 
will be drawn. The process is repeated for all strata and the sum of the 
sample sizes from the strata will amount to 0.1 of the population size, 
that is, 36 out of the number of days in the year that were available in the 
data. Within each stratum, simple random sampling without replace-
ment was applied with a fixed sample size. The standard a draw-by-draw 
procedure where units in each stratum have equal probability of selec-
tion was performed. For a fixed sample size of nj within stratum j, the 
probability of selection is πj =

nj
Nj 

for each unit in the stratum. The 
expansion estimators for the total number of powerboat retrievals and 
associated variability were obtained as follows; 

T̂otal = Nμ̂ (7)  

V̂ar
(

T̂otal
)
=
(

1 −
n
N

)∑J

j=1
N2

j V̂ar(μ̂) (8)  

2.3.3.2. Design 4: weighted allocation (SRSW). In this study, the total 
number of powerboat retrievals was unequal across strata and provided 
useful information for defining the sampling weights, wj for the strata. 
The weight, wj of units sampled from each stratum was determined by 
the ratio of stratum total number of powerboat retrieval counts to the 
overall total. For each sampling proportion, sampling fractions within 
the strata were obtained by multiplying the sample size required to the 
weights of the stratum total to the overall total number of powerboat 
retrievals. Based on wj, simple random sampling was applied to select 
the sampled units. The expansion estimators for the total number of 
powerboat retrievals and the variability were obtained as 

̂Total =
∑J

j=1

∑

i∈Sj

wjYij (9)  

V̂ar
(

T̂otal
)
=
∑J

j=1

(
1 − wj

)
N2

j w2
j V̂ar(μ̂) (10)  

2.4. Data analysis 

Jackknife resampling was carried out 10,000 times, where the 
number of days with associated counts of powerboat retrievals was 
drawn without replacement using the sampling techniques described. 
The sampling techniques were studied selecting sampling sizes of up to 
90 % of the population size except for the systematic sampling design. 
For illustration, if the sampling effort was 20 %, then 73 days with 
associated counts of powerboat retrievals were selected based on the 
sampling designs, without replacement, for each run. For the days 
sampled, the associated counts of powerboat retrievals were used to 
obtain estimates of the average number of powerboat retrievals (μ̂), 
coefficient of variation (CV), root mean square error (RMSE) and 
coverage rate. The coverage rate measures the proportion of times that 
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the 95 % confidence bounds for the estimates of the annual number of 
powerboat retrievals contain the true estimate for the ramps. For each 
jackknife draw, estimates of the average number of powerboat re-
trievals, the coefficient of variation (CV) and the root mean square error 
(RMSE) were calculated and coverage was assessed. In practice, a 90 % 
coverage is often set as the minimum acceptable rate. Final estimates 
were averaged over the 10,000 jackknife sampled estimates. The bias, 
precision and accuracy were measured by the mean estimates, μ, co-
efficient of variation, CV and root mean square error, RMSE respectively. 

Relative standard error (RSE) was used to gauge how well the sample 
total measures up to the population total. In fisheries research practices, 
a relative standard error of 20 % is often deemed an appropriate 
threshold (Vølstad et al., 2014). For each sampling design, the relative 
standard error was calculated as: 

RSE =

∑10000

m=1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar
(

T̂otal
)√ /

T̂otal
)

m

10, 000
× 100% (11)  

where T̂otal and V̂ar
(

T̂otal
)

denote the expanded count and variance 

defined in Eqs. (9) and (10) respectively. The operating cost of camera 
data interpretation was obtained as the average reading cost per stratum 
summed across the strata 

Cost = Rc

∑J

j=1
Dj × TRj (12)  

where Dj is the number of days and (TRj) the average reading time of 24 
-h camera footage in stratum j (Table 2) and Rc is the casual hourly pay 
rate (in Australian dollars). 

All analyses were performed in R (version 3.6.2, R Core Team, 2019) 
using the ‘strata’ function in the ‘SamplingStrata’ package (version 
1.5− 1) (Barcaroli, 2014), ‘S.SY’ function in ‘TeachingSampling’ 
(version 4.0.1) (Rojas, 2020), and the ‘filter’ function in ‘dplyr’ (version 
0.8.3) (Wickham et al., 2019). 

3. Results 

3.1. Distribution of powerboat retrievals across ramps and strata 

The distributions of powerboat retrievals differed with respect to the 
eight strata across the ramps (Table 2). More powerboat retrievals 
occurred in autumn and winter for the low traffic ramp (Denham). The 
daily average number of powerboat retrievals for weekends and week-
days in autumn and winter were similar for the low traffic ramp. In 
contrast, more powerboat retrievals occurred during summer at the 
moderate and high traffic ramps. The daily average number of power-
boat retrievals recorded on weekends were more than on weekdays 
across the seasons for the moderate and high ramps. 

3.2. Estimation of the average number of daily powerboat retrievals 

The designs provided estimates of the daily average number of 
powerboat retrievals, the coefficient of variation and root mean square 
error with one standard deviation errors bars capturing the parameters 
for the ramps considered (Fig. 2). Estimates were similarly unbiased, 
precise and accurate across the various sampling proportions (Fig. 2). 
Uncertainty in the estimates of the daily average number of powerboat 
retrievals decreased with increased sampling proportion for all the de-
signs. The level of uncertainty around the estimates associated with the 
performance measures varied among the sampling designs. There was 
lower accuracy and precision for the estimates obtained at lower sam-
pling proportion for all the ramps considered. 

3.3. Estimation of the annual number of powerboat retrievals and cost 

The estimated number of powerboat retrievals expanded to the 
entire year obtained from the sampling designs aligned with the known 
total counts of powerboat retrievals for all three ramps. Averages of 
expanded estimates for the 10,000 jackknife samples were unbiased and 
the uncertainty around the estimates declined with increased sampling 
proportion (Fig. 3). There were minor losses in accuracy for the sys-
tematic sampling designs (SSRS), however, it generally observed lower 
variability around its estimates. For the moderate and high traffic ramps, 
the cost associated with the stratified sampling design with weighted 
(SRSW) allocation was slightly higher than for the other designs. The 

Table 2 
Distributional characteristics and attributes of the counts of powerboat retrievals obtained from remote cameras at Denham (low traffic), Leeuwin (moderate traffic) 
and Hillarys (high traffic) within season and day type strata.  

Attribute Stratum         
Season Autumn Spring Summer Winter  

Daytype W/day W/end W/day W/end W/day W/end W/day W/end Total 

Denham (Low traffic ramp) 
Number of days in strata 61 31 64 27 61 29 64 28 365 
Total number of powerboat retrievals 1332 858 500 252 249 237 1220 610 5258 
Proportion of the overall total 0.25 0.16 0.10 0.05 0.05 0.05 0.23 0.12 1 
Mean 21.84 27.68 7.81 9.33 4.08 8.17 19.06 21.79 14.41 
Standard deviation 19.45 20.15 8.42 8.93 4.15 6.13 13.75 15.13 15.23 
Average reading time for 24-hr footage (in hrs) 1.04 1.09 1.13 0.88 0.99 0.91 1.25 1.23  
Leeuwin (Moderate traffic ramp) 
Number of days in strata 62 30 64 27 63 28 65 27 366 
Total number of powerboat retrievals 1519 1887 894 1217 2206 2222 1210 1138 12,293 
Proportion of the overall total 0.12 0.15 0.07 0.10 0.18 0.18 0.10 0.10 1 
Mean 24.50 62.90 13.97 45.07 35.02 79.36 18.62 42.15 33.59 
Standard deviation 12.7 29.6 11.1 26.3 25.0 32.8 18.0 30.1 29.0 
Average reading time for 24-hr footage (in hrs) 1.18 1.53 1.88 1.94 2.17 3.23 0.98 1.25  
Hillarys (High traffic ramp) 
Number of days in strata 62 30 65 26 61 30 65 27 366 
Total number of powerboat retrievals 3848 3255 5379 3115 6758 5169 1875 1254 30,653 
Proportion of the overall total 0.13 0.11 0.18 0.10 0.22 0.17 0.06 0.04 1 
Mean 62.06 108.50 82.75 119.81 110.79 172.30 28.85 46.44 83.75 
Standard deviation 23.24 62.67 69.04 111.24 82.08 103.09 32.08 66.66 78.49 
Average reading time for 24-hr footage (in hrs) 2.51 3.68 3.11 4.58 3.20 4.60 2.25 2.82   
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Fig. 3. Expanded total number of powerboat retrievals, total cost of manual interpretation and the 95 % predicted margin of error as a function of sample size 
proportion based on a posteriori data analysis. Sample units were randomly selected without replacement using the different sampling techniques from the camera 
records of Denham (low traffic), Leeuwin (moderate traffic) and Hillarys (high traffic) boat ramps. Results presented were averaged over 10,000 resamples. The error 
bars are 1 standard error of the average of the estimates from the 10,000 resamples. The horizontal dashed lines represent the true point estimates based on a census 
of all counts from observed data sets. (SRS - simple random sampling, SSRS - systematic sampling, SRSP - stratified random sampling with proportional allocation, 
and SRSW - stratified random sampling with weighted allocation). 

Table 3 
Average relative standard error (± standard deviations) and the coverage rate from the 10,000 jackknife draws for the sampling designs across the sampling pro-
portions from the camera records of Denham (low traffic), Leeuwin (moderate traffic) and Hillarys (high traffic) boat ramps (SRS - simple random sampling, SSRS - 
systematic sampling, SRSP - stratified random sampling with proportional allocation, and SRSW - stratified random sampling with weighted allocation).  

Relative standard error (%) Sampling proportion 

Ramp type Sampling 
designs 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Low traffic 

SRS 34.04±8.29 24.09±6.31 19.69±5.29 17.05±2.78 15.25±2.10 13.98±1.78 12.92±1.02 12.10±0.98 11.42±0.76 
SSRS 33.96±3.89 24.12±3.12 20.28±2.59 16.77±1.62 – – – – – 
SRSP 34.06±6.32 24.13±5.39 19.62±4.86 16.98±2.27 15.28±2.06 14.03±1.85 12.94±0.98 12.10±0.82 11.42±0.69 
SRSW 30.66±5.45 23.17±4.85 19.44±4.05 15.75±1.86 15.22±1.56 13.72±1.23 12.92±0.85 11.95±0.66 11.42±0.53 

Moderate 
traffic 

SRS 26.58±7.68 17.66±6.89 13.48±6.05 10.80±5.38 8.81±4.56 7.26±3.89 5.77±2.08 4.43±1.68 2.97±1.02 
SSRS 26.56±6.48 17.82±5.27 13.74±4.25 10.61±3.51 – – – – – 
SRSP 25.60±7.06 17.88±6.56 13.41±5.98 10.78±5.02 8.82±3.58 7.28±3.09 5.79±2.33 4.41±1.97 3.64±1.23 
SRSW 26.97±5.23 18.51±4.26 15.08±3.39 11.70±3.03 9.17±2.41 7.76±2.01 6.79±1.27 5.49±0.92 2.97±0.65 

High traffic 

SRS 22.16±6.25 19.11±5.95 14.61±5.03 11.71±4.79 9.55±4.09 7.87±3.98 6.25±3.06 4.80±2.98 3.22±2.35 
SSRS 22.18±4.56 19.15±4.13 14.33±3.65 12.25±3.20 – – – – – 
SRSP 22.68±5.68 19.20±5.08 14.61±4.95 11.71±4.23 9.56±3.99 7.88±3.78 6.25±3.25 4.80±2.78 3.22±2.26 
SRSW 21.76±5.09 18.76±4.62 14.53±4.25 10.87±4.01 9.51±3.75 7.52±3.06 6.44±2.52 4.76±2.34 3.23±1.79 

Coverage rate (%) 

Low traffic 

SRS 93.73 96.00 97.05 98.35 99.04 99.53 99.85 99.98 100 
SSRS 89.83 100 100 100 – – – – – 
SRSP 96.15 98.04 98.58 99.42 99.78 99.88 99.99 100 100 
SRSW 84.17 99.68 99.99 100 100 100 100 100 100 

Moderate 
traffic 

SRS 92.77 93.47 94.11 94.35 94.97 94.79 95.03 96.64 96.82 
SSRS 100 100 100 100 – – – – – 
SRSP 98.86 98.57 98.12 98.61 99.07 100 99.04 98.98 98.52 
SRSW 95.51 99.05 99.96 100 100 100 100 100 100 

High traffic 

SRS 92.89 93.82 94.12 94.73 94.98 95.25 95.12 95.13 94.90 
SSRS 100 100 100 100 – – – – – 
SRSP 96.38 96.75 96.96 97.13 97.20 97.59 97.46 97.70 96.94 
SRSW 88.2 91.8 97.8 100 100 100 100 100 100 

Note: Results in italics indicate that the point RSE estimates were above the 20 % threshold (Vølstad et al., 2014). 
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sampling proportion. It could serve as a useful reference to guide rec-
reational fishing survey practitioners in determining the adequate levels 
of sampling effort for interpreting data from digital camera monitoring 
to estimate fishing effort and catches. 

By construction, the four classical sampling designs considered in 
this study could be divided into two groups: the non-stratified group and 
stratified group. The non-stratified group included the simple random 
sampling (SRS) and the systematic sampling (SSRS); and the stratified 
group included the stratified sampling designs with proportional (SRSP) 
and weighted allocation (SRSW). On average, the estimates obtained 
from the samples selected by the designs in the 10,000 jackknife draws 
were unbiased, and accurate with varying variability across sampling 
proportion, and notably less precise at low sampling fractions (high 
RSEs). The non-stratified group behaved differently in terms of the 
variability around their estimates. SRS most often obtained estimates 
with large variability compared to SSRS. Stratified designs yielded more 
consistent estimates with their variability decreasing in a well-defined 
fashion across sampling proportion. Based on the behaviour of the co-
efficient of variation, SRSP was more consistent in estimating sample 
variability comparable to population estimates for low and moderate 
traffic ramps. However, SRSW was more consistent for the high traffic 
ramp, especially at low sampling proportion. SRSW was generally more 
accurate but the most expensive (Fig. 3). 

Classical sampling designs considered in this study are simple to 
understand and easy to implement in recreational fishing surveys 
(Table 1) and other studies. Simple random sampling, stratified random 
sampling, systematic sampling and stratified systematic unaligned 
sampling schemes have been studied as suitable sampling designs for 
classified digital sensing data (Hashemian et al., 2004). In the present 
study, SRS was the worst performing design as measured by the 
coverage, implying that it was the least stable design in the jackknife 
draws performed. Although the sampling units have equal probability of 
selection, the design is prone to yielding samples that are not repre-
sentative of the population and at smaller sampling proportion, resulting 
in more variability among the sample estimates (Lohr, 2010). However, 
it provided unbiased average estimates of the total number of powerboat 
retrievals with varying variability (often comparatively larger to the 
other designs) across the various sampling effort for the ramps 
considered. 

The systematic random sampling (SSRS) is a good proxy for the 
simple random sampling (SRS). It is very simple in execution relying on 
a sampling interval to select sampling units and gives better coverage of 
the population space. It always performs better than the simple random 
sampling for a well-defined population that exhibits no patterns and has 
low risk of manipulation (Lohr, 2010). From the results obtained, SSRS 
presents as a useful sampling design and would yield sample estimates 
that are unbiased, accurate and precise, especially in instances where 
there is no prior knowledge of strata level and the data do not have any 
cyclical patterns. The design should, however, be used with caution 
especially in deciding on the sampling interval to be used. For instance, 
boating traffic is influenced by whether the day is a weekend or weekday 
(Desfosses and Beckley, 2015); in effect, more boating activities are 
often recorded on weekends than on weekdays. For some sampling in-
tervals, SSRS could contain either all weekends or all weekday, thereby 
losing its representativeness and provide biased estimates of the popu-
lation parameters. In addition, the design has low entropy, implying that 
the distribution of the probability mass function of this design is weakly 
spread on its support, which is smaller than the population size (Pea 
et al., 2007). 

The stratified sampling design with proportional allocation (SRSP) 
obtained samples that were miniature versions of the population (Lohr, 
2010), promoting long term usage of sampled data obtained from this 
design in time series studies for trend detection and other comparisons. 
This design is weighted under stratified simple random sampling if the 
cost of data collection and variability is uniform across strata. Other-
wise, weighted allocation (SRSW) provides the best estimates. In this 

study, SRSW was not the most cost-efficient design because the criterion 
used for determining sample size within strata did not consider cost. 
More samples were drawn from busy strata which had higher associated 
reading cost associated because readers required more time to interpret 
data compared to less busy strata for the same duration of footage. In 
effect, more cost was incurred as the sampling intensities were higher in 
busier strata. The high coverage rates achieved by the designs with 
stratification component in estimating total recreational boating effort 
at various sampling proportion are encouraging, implying they would fit 
in well with camera surveys which mostly incorporate the stratified 
random sampling design (Table 1) as well as other on-site surveys, for 
example, the bus-route method in Lai et al. (2019). This study highlights 
that it would be beneficial for researchers to consider reading a full year 
of data to provide suitable weights for on-going low-level monitoring. It 
is suggested that a census of boating effort must be repeated at regular 
intervals to guard against potential unusual boat behaviour and to detect 
emerging trends. Generally, the number of strata is chosen in a fashion 
that minimizes the variance of the estimator of the population total, 
which is followed by the optimal allocation of samples within strata. 
According to Scheaffer et al. (2006), the three factors that determine the 
best allocation for each stratum are the total number of elements, the 
associated variability of observations in each stratum and the cost of 
obtaining an observation from each stratum. 

The level of resolution of the primary sampling unit used in this study 
adds to the simplicity of application of the sampling designs in practice. 
In a trial study, Hamer et al. (2019) used randomly sampled hourly 
blocks within days of boat launching and retrieval activities and then 
used a model-based estimator to predict effort occurring at other times. 
Their preliminary results achieved greater than 80 % accuracy when 30 
% of available images were used, suggesting that their method has po-
tential in the estimation of effort and catch. However, in Western 
Australia, recreational fishing activities are dynamic within the day, 
distributions of activities across hours of the day differ significantly and 
estimates based on hourly blocks sampled would greatly affect the es-
timates obtained from a model-based estimator (Lai et al., 2019; Ryan 
et al., 2017). Overcoming the modelling complexity would require that 
more assumptions must be made, which would compromise the esti-
mates obtained. Adopting different weighting schemes for type of days 
and daily hourly intensities of boating activities across sampling strata 
could overly complicate the model, and would not ultimately resolve the 
fact that the estimation process could lead to biased estimates (Gelman, 
2007). We anticipate that modelling the daily distributions within strata 
would compare much better in precision and accuracy of estimates than 
modelling the distributions of daily hourly blocks. 

Hartill et al. (2019) highlighted the need to optimize the utility and 
value of information provided by digital camera monitoring, more 
importantly in the area of reading cost. The decision to determine an 
optimal level of days of camera footage to be interpreted is a subjective 
call and would be driven by several factors including survey objectives. 
For example, when digital camera data are used to validate estimates of 
fishing effort from other surveys (with adjustment for non-fishing ac-
tivities) a larger sampling fraction, or even a census of footage, may be 
considered an appropriate level of footage to manually interpret. In 
surveys that involve concurrent digital camera and on-site surveys, gains 
in precision and accuracy of the estimated number of powerboat re-
trievals flow through to estimates of fishing effort and catch (Steffe et al., 
2008, 2017; Taylor et al., 2018b). In this instance, the survey practi-
tioner may also wish to select a high sampling fraction. Conversely, 
when the number of powerboat retrievals is used as a proxy for fishing 
effort between surveys (i.e. low-level monitoring), a lower sampling 
fraction may be considered appropriate. Therefore, the manual reading 
of 40 % of sampling days is unlikely be optimal for all digital camera 
datasets. Another issue of concern is dealing with missing data. 
Analytical techniques have been developed to impute for missing pe-
riods (Afrifa-Yamoah et al., 2020b; Hartill et al., 2016; van Poorten 
et al., 2015). However, if the proportion of missing data is relatively 
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small and it is reasonable to assume that data are missing at random, 
then such days could be removed from the sample (Smallwood et al., 
2012; Taylor et al., 2018a). 

5. Conclusion 

While the automation of the monitoring system would ultimately 
provide a cost-efficient means of data interpretation (Buch et al., 2011), 
advances in this technology are in an early phase in monitoring recre-
ational fishing effort (Hartill et al., 2019). Thus, in the interim and 
beyond, this study would improve the utility of digital camera moni-
toring by reducing the cost of manual data interpretation and data 
storage. The consistency in the trends of the relationships between the 
performance indicators, cost across ramps and sampling proportion 
from the sampling designs are indicative of the significant gains ach-
ieved and their reliability in practice. The re-sampling approaches 
applied in this study would be relevant to other types of recreational 
fishing surveys (e.g., boat ramp surveys) and are also broadly applicable 
to other areas of fisheries research where decisions on sampling intensity 
need to be considered alongside cost and data quality. This will guide 
recreational fisheries researchers to evaluate expected precision in 
relation to sampling proportion in their management domains. 
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Berger, Y.G., Tillé, Y., 2009. Sampling with unequal probabilities. In: Pfeffermann, D., 
Rao, C.R. (Eds.), Handbook of Statistics, Volume 29A. Elsevier. https://doi.org/ 
10.1016/S0169-7161(08)00002-3. 

Blight, S., Smallwood, C., 2015. Technical manual for camera survey of boat- and shore- 
based recreational fishing in Western Australia. Fisheries Occasional Publication. 
Department of Fisheries, Western Australia. No. 121. https://www.fish.wa.gov. 
au/Documents/occasional_publications/fop121.pdf.  

Buch, N., Velastin, S.A., Orwell, J., 2011. A review of computer vision techniques for the 
analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 2 (3), 920–939. https 
://ieeexplore.ieee.org/document/5734852. 

Desfosses, C., Beckley, L.E., 2015. Temporal and environmental factors affecting the 
launching of recreational boats at entrance point boat ramp, Broome, Western 

Australia. In: Beckley, L.E. (Ed.), Final Report of Project 2.1.1 of the Kimberley 
Marine Research Program Node of the Western Australian Marine Science 
Institution, pp. 77–91. Chapter 5. https://www.wamsi.org.au/sites/wamsi.org.au/ 
files/. 

Edwards, J., Schindler, S., 2017. A video monitoring system to evaluate ocean 
recreational fishing effort in Astoria, Oregon. Report to: Pacific States Marine 
Fisheries Commission and Marine Recreational Information Program. https://www. 
recfin.org/wp-content/uploads/2017/06/Astoria-VBC-Project-Final.pdf. 

Flynn, D.J.H., Lynch, T.P., Barrett, N.S., Wong, L.S.C., Devine, C., Hughes, D., 2018. 
Gigapixel big data movies provide cost-effective seascape scale direct measurements 
of open-access coastal human use such as recreational fisheries. Ecol. Evol. 8 (18), 
9372–9383. https://doi.org/10.1002/ece3.4301. 

Gelman, A., 2007. Struggles with survey weighting and regression modelling. Stat. Sci. 
22 (2), 153–164 http://www.stat.columbia.edu/~gelman/.  

Hamer, P., Whitten, A., Giri, K., 2019. Developing tools to inform management risk and 
improve recreational fishery monitoring for a complex multi-sector, multi- 
jurisdiction fishery: the ‘Western Victorian Snapper Stock’. Final Report, FRDC 
Project 2013/201. Fisheries Research and Development Corporation, Canberra. http 
s://www.frdc.com.au/Archived-Reports/FRDC.  

Hartill, B.W., Payne, G.W., Rush, N., Bian, R., 2016. Bridging the temporal gap: 
continuous and cost-effective monitoring of dynamic recreational fisheries by web 
cameras and creel surveys. Fish. Res. 183, 488–497. https://doi.org/10.1016/j. 
fishres.2016.06.002. 

Hartill, B.W., Taylor, S.M., Keller, K., Weltersbach, M.S., 2019. Digital camera 
monitoring of recreational fishing effort: applications and challenges. Fish Fish. 21 
(1), 204–215. https://doi.org/10.1111/faf.12413. 

Hashemian, M.S., Abkar, A.A., Fatemi, S.B., 2004. Study of sampling methods for 
accuracy assessment of classified remotely sensed data. International Congress for 
Photogrammetry and Remote Sensing, pp. 1682–1750. https://www.semanticscho 
lar.org/paper/. 

Keller, K., Steffe, A.S., Lowry, M., Murphy, J.J., Suthers, I.M., 2016. Monitoring boat- 
based recreational fishing effort at a near-shore artificial reef with a shore-based 
camera. Fish. Res. 181, 84–92. https://doi.org/10.1016/j.fishres.2016.03.025. 

Kimura, D.K., Somerton, D.A., 2006. Review of statistical aspects of survey sampling for 
marine fisheries. Rev. Fish. Sci. 14 (3), 245–283. https://doi.org/10.1080/ 
10641260600621761. 

Lai, E.K.M., Mueller, U., Hyndes, G.A., Ryan, K.L., 2019. Comparing estimates of catch 
and effort for boat-based recreational fishing from aperiodic access-point surveys. 
Fish. Res. 219, 1–12. https://doi.org/10.1016/j.fishres.2019.06.003. 

Lohr, S.L., 2010. Sampling: Design and Analysis, 2nd ed. Brooks/Cole, Cengage Learning, 
Boston, USA.  
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