Tensile and superelastic behaviors of Ti-35Nb-2Ta-3Zr with gradient structure

Liqiang Wang
Yingchen Wang
Wei Huang
Jia Liu
Yujin Tang

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Engineering Commons

10.1016/j.matdes.2020.108961
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/8766
Tensile and superelastic behaviors of Ti-35Nb-2Ta-3Zr with gradient structure

Liqiang Wang a,b, Yingchen Wang b, Wei Huang b, Jia Liu a,* Yujin Tang a, Ling Zhang c,* Yuanfei Fu d, Lai-Chang Zhang e,* Weijie Lu b

a Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
b State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
c Electron Microscopy Center of Chongqing University, International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
d Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
e School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia

HIGHLIGHTS

• Ti35Nb2Ta3Zr processed by double-faced friction stir processing obtained roughly 2 times higher yield strength.
• Superelasticity showed different tendency after friction stir process.
• Higher strength in stir zone and better ductility in heat affected zone were confirmed by in situ microcompression tests.

GRAPHICAL ABSTRACT

ABSTRACT

We investigated the tensile and superelastic behaviors of Ti-35Nb–2Ta–3Zr processed by double-faced friction stir processing that results in a roughly 2 times higher yield strength with an elongation of 37%. The friction stir processed specimens exhibited different superelasticity as loading cycle increased. To assess the strength and deformation of gradient structure, in situ micro compression tests were conducted on stir zone and heat affected zone, revealing higher strength in stir zone and better ductility in heat affected zone. The combination of stir zone and heat affected zone could increase the strength and maintain the ductility of the specimen simultaneously.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

β titanium alloy has been used extensively in biomedical applications due to their relatively low Young’s modulus, good biocompatibility, outstanding corrosion and wear resistance [1–6]. Nevertheless, low service strength of β titanium alloy limited its application in the
field of load-bearing implants. For enhancement of the mechanical properties, constructing nanostructure processed by severe plastic deformation technologies has been reported previously [7–10]. However, the significant increase of strength brings about tremendous reduction in ductility and increment of modulus. Single structure can not satisfy internal and external biological environment simultaneously. Therefore, gradient structure with nanostructure surface has attracted lots of attention [11–13]. Lu et al. found gradient boundary migration process accompanied a simultaneously continuous grain growth, resulting a 10 times higher yield strength without a reduction of ductility [14]. Wei et al. produced a gradient nanotwinned structural TWIP steel and found the hierarchical nanotwins contributed to the increase of the yielding strength and interactions of twin-twin accompanying with dislocation-twin maintained the ductility [15]. Bahrami et al. synthesized Ti-Ta coatings by confocal dual magnetron co-sputtering, which achieved high elasticity and better adhesion to a soft metallic substrate [16]. In addition, plenty of applications were also discussed. Yasaman et al. designed and 3D-printed gradient-structured scaffolds, which improved integration of scaffolds with native tissue [17]. Nan et al. fabricated the structural/compositional gradient nanofibrous scaffolds, which had the potential to induce interfacial tissue regeneration [18]. Sana et al. summarized existing cell-free approaches and confirmed sustained value of gradient structural materials [19]. Though many researchers reported the preparation and application of gradient structural materials, very few studies on the gradient structural β titanium alloy have been reported.

Recently, many researchers have tried to use friction stir processing technology (FSP), a novel solid-state surface modification technique, to modify the materials’ surface to improve mechanical properties [20–24]. Four regions, including stir zone (SZ), transition zone (TZ), heat affected zone (HAZ) and matrix, can be observed in the FSPed materials from upper surface [25,26]. However, much effort has already been taken to investigate the SZ of the FSPed materials and few reports investigate the gradient structure of β titanium alloy after FSP [27–30]. Therefore, we tried to introduce FSP to process the Ti-35Nb-2Ta-3Zr layers in order to achieve a gradient structure of β titanium alloy and

Fig. 1. Microstructure of the double-faced FSPed specimen: (a) optical image, and TEM images of (b) recrystallized grains in region A in stir zone, (c) needle-shaped martensite phase inside the recrystallized grain (the red box in (b)), (d) martensite phase in the transition zone, (e) martensite phase in the transition zone at a higher magnification, (f) dislocation tangles, martensite phase and the elongated grains in the heat affected zone.
investigate the contribution of the gradient structure to mechanical properties. In our work, we would construct a gradient structure from surface to core through processing both the upper and lower surfaces of the layer by FSP. We investigated the contribution of the gradient structure and the deformation mechanism by the tensile tests and the micropillar compression.

2. Materials and methods

The Ti-35Nb-2Ta-3Zr plate with a thickness of 5 mm was processed via FSP using W-Re alloy tool in an argon atmosphere. We used two methods to build different gradient structural materials. The first was processing the upper surface with probe diameter of 12 mm and probe plunge depth of 1.7 mm at rotation speed of 225 rpm and travel speed of 50 mm/min. The second was processing both the upper and lower surfaces with probe diameter of 12 mm and probe plunge depth of 0 mm at rotation speed of 150 rpm and travel speed of 50 mm/min.

The microstructures were characterized by transmission electron microscopy (TEM) in a JEM 2100 microscope operated at 200 kV. TEM specimens were cut from designated depth (0.2 mm, 0.7 mm, 2.0 mm) and ion thinned to a thickness of 100 nm. Tensile specimens with gauge section of \(10 \times 6 \times 3.5 \) mm (L × W × H) were cut along the process path. During friction stir process, thickness of specimens was reduced by thermo-mechanical treatment. Final thickness of samples for tensile tests was therefore 3.5 mm. Room temperature tension tests were performed at a strain rate of \(1 \times 10^{-3} \) s\(^{-1}\), using a Zwick Z100/SN3A universal testing machine. The cyclic tensile tests were carried out at strains of 3%, 5% and 7%, respectively. The specimens after the tensile tests for micrographs were cut, ground, polished and etched with a volume ratio 1:3:10 of HF:HNO\(_3\):H\(_2\)O, and characterized in a Nova FEI 400 field emission scanning electron microscope (SEM). The micropillar was fabricated by focusing ion beam (FIB) using SciosDualBeam with the current range of 15–0.1 nA, gradually reduced to match the micropillar dimensional accuracy of the layer-by-layer procedure.

Fig. 2. (a) Schematic illustration of the position, shape and size for the tensile specimen; (b) Stress–strain curves obtained by tensile tests; SEM images of microstructures along the tensile direction after the tensile tests of (c) the matrix, (d) the single-faced FSPed specimen and (e) the double-faced FSPed specimen; SEM images of the fracture surface of (f) the matrix, (g) the single-faced FSPed specimen and (h) the double-faced FSPed specimen.
peeling. Micropillars with diameter of 2 μm and height of 6 μm were obtained. Micropillar compression is performed under displacement controlled mode in a Zeiss Auriga SEM-FIB equipped with a Hysitron PI88 system, with a constant compression rate at 5 nm/s during compression.

3. Results and discussions

Fig. 1 (a) shows the optical microstructure in transversal cross-section of the double-faced (D-F) FSPed specimen. A gradient structure with several distinct regions can be consecutively observed from the upper surface to the lower surface, including stir zone (SZ), transition zone (TZ) and heat affected zone (HAZ), respectively. Grains in as-cast beta titanium alloy obtain a large size, which has been widely studied [31]. After FS process, grains are refined to varying degrees. Similar to former research, grains size shows a decreasing trend [29] from internal to the surface. Fig. 1 (b)–(c) show the TEM images of stir zone (i.e., region A in Fig. 1 (a)). From Fig. 1 (b), there is no distinct anisotropy and almost equiaxied grains are uniformly distributed with an average grain size less than 2 μm, consistent with the occurrence of dynamic recrystallization in references [25]. In Fig. 1 (c) (the red box in Fig. 1 (b)), massive parallel needle-shape α″ martensite with more than 2 μm in length and less than 50 nm in width occur inside the recrystallized grain. Dislocation tangles and dislocation walls can be found around the grain boundaries, as indicated by the yellow arrows. In transition zone, much coarser martensitic laths can be found across the grains and a mass of dislocations distribute in the grain internal and around the interface, as shown in Fig. 1 (d) and (e). The area in transition zone undergoes the plastic deformation suffered by shearing force and stress from stir zone with shorter excursion time and lower temperature. Therefore, the stress-induced α″ martensite nucleates and grows quickly in transition zone, resulting in longer and wider stress-induced α martensite. As seen from heat affected zone in Fig. 1 (f), a pile of dislocations gather around the grain boundaries. In addition, plate-shaped α″ martensite inside the grains and elongated grains along processing direction are observed, as illustrated in Fig. 1 (f). During friction stir processing, heat affected zone with high depth undergoes high forces, which will thus induce the martensitic transformation. According to Lee’s research, martensite growth can be blocked by high-angle grain boundary, instead of low-angle grain boundary [32]. Grains in HAZ achieve a larger size than grains in SZ, density of grain boundary in HAZ is relatively low. With fewer obstacles from grain boundary, martensite in HAZ grows coarser than that in SZ.

Fig. 2 (a) shows schematic illustration of the position, shape and size for the tensile specimen. Fig. 2 (b) depicts the curves of the tensile tests at the strain rate of 1×10⁻³ s⁻¹. Compared with the matrix, the single-faced (S-F) FSPed sample has a light increase of the yield strength from ~300 MPa to ~350 MPa. However, the double-faced (D-F) FSPed sample has a significant increase in yield strength from ~300 MPa to ~550 MPa and an increase in ultimate tensile strength from ~540 MPa to ~630 MPa, with an elongation of 3% simultaneously. As shown in Fig. 2 (b), the curves of both the matrix and the S-F FSPed have a relatively flat plateau, indicating stress-induced martensite transformation and the initiation of slip deformation of α″ martensite. Fig. 2 (c)–(e) illustrates the typical microstructures of the matrix, the S-F FSPed and the D-F FSPed along the tensile direction after the tensile tests. Seeing from Fig. 2 (c), indicating the matrix feature after the tensile test, bunchy stress-induced martensite occurred inside the grain and around the boundaries, changing from acicular martensite to butterfly shaped martensite. With increasing deformation during the tensile test, the combination of shear of slip bands and interaction of plate-shaped martensite refines the plate-shaped martensite, indicated by white arrows in Fig. 2 (c). In Fig. 2 (d) and (e), we find the distinct regions of TZ and HAZ for the S-F FSPed and the D-F FSPed specimens after tensile tests. Drape-shaped martensite in TZ and plate-shaped martensite and thin acicular martensite in HAZ are investigated. Furthermore, the acicular martensite in HAZ of the D-F FSPed are less than that of S-F FSPed, as depicted by white arrows in Fig. 2 (d) and (e). In addition, Wang et al. investigated the dynamic recrystallization mechanism of stir zone and transition zone of FSPed β titanium alloy and obtained the nanoscale grains through three-pass FSP [29]. In our work, we construct a gradient structure with submicroscale and microscale grains. During loading period, substantial grain growth could occur and accommodate the large plastic strains in gradient structure [14]. According to Hall-Petch relationship, coarser grains have smaller yield strength. Plastic deformation occurs first in coarse grains, then propagates into refined grains as load increases. In this orderly deformation process, strain localization is suppressed by releasing intergranular stress, hence excellent ductility is
Fig. 4. (a) Stress-displacement curves of SZ and HAZ from micropillar compression tests of the D-F FSPed specimen; Representative morphology of the fabricated micropillars of the D-F FSPed specimen in (b) SZ and (c) HAZ; SEM snapshots of pillars in SZ compressed to the displacements in (d) 300 nm, (e) 450 nm, (f) 600 nm; SEM snapshots of pillars in HAZ compressed to the displacements in (g) 300 nm, (h) 450 nm, (i) 600 nm.
ensured [11]. Meanwhile, microscale and submicroscale grains contribute to considerable fine grain strengthening. Therefore, the gradient structure starting from micro-submicro grains achieves both high strength and excellent ductility.

Fig. 2 (f)–(h) display the SEM micrographs of the fracture surface of the matrix, the S-F FSPed and the D-F FSPed tensile tested specimens, respectively. The fracture morphologies reveal ductile fracture in overall specimens. The matrix tolerates a good deal of elongation before the breakage with deep simple. As seen in Fig. 2 (g) and (h), dimples in HAZ are obviously larger than that in TZ, contributing to plasticity of the D-F FSPed tensile tested specimen. Besides, dimples in HAZ of S-F FSPed specimen are even larger than that in HAZ of D-F FSPed specimen, which corresponds to higher elongation of S-F FSPed alloy. Two friction stir processes lead to more severe deformation, hence D-F FSPed specimen has higher residual stress. Residual stress facilitates the fracture, confirmed by Li et al. [33], which can explain the difference of ductility between S-F and D-F FSPed specimens.

Fig. 3 (a), (b) and (c) display stress-strain curves of cyclic loading-unloading tensile tests for the matrix, the S-F FSPed and the D-F FSPed specimens, respectively. Residual strain (ε_r), superelastic strain (ε_se) and pure elastic strain (ε_el) of corresponding specimens are shown in Fig. 3 (d), (e) and (f). It has been studied that deformation-induced twin martensite could contribute much to superelasticity [28,34]. According to former research, obstacles to extended dislocations and appropriate stacking fault energy accelerate martensite nucleation [35,36]. Pre-deformed specimens have more dislocations, hence twin martensite is easier to be induced during loading. Consequently, more superelastic strain could recover during unloading. However, the growth of martensite is hindered by dislocation as well. As a result, superelastic strain rises sluggishly or even declines, which is shown in Fig. 3 (e) and (f). In contrast, matrix is not pre-deformed. Lower dislocation density provides less driving force to induce martensite, hence ε_se after the first cycle is relatively small. Meanwhile, dislocation hindering has less influence on growth of stress-induced martensite, which means martensite-inducing mechanism is the dominant factor during subsequent loading process. Therefore, ε_se of matrix could increase continuously with the number of cycles, as shown in Fig. 3 (d).

The stress-displacement curves of micropillar in SZ and HAZ of the D-F FSPed specimen are plotted in Fig. 4 (a). The slope of the stress-displacement in SZ is obviously higher than that in HAZ in elastic stage. The strength of the micropillar in SZ is higher than that in HAZ. The typical morphology of the fabricated SZ and HAZ micropillars is shown in Fig. 4 (b) and (c). Fig. 4 (d)–(k) shows the SEM microphology of the micropillar in SZ and HAZ with the displacements in 300 nm, 450 nm, and 600 nm, respectively. With the increase of the displacement, no significant shape change is observed in SZ micropillar. Due to the largest plastic deformation and axial stress during processing, in the SZ, the grains were finest (Fig. s1) and the dislocation intensity was the highest. Based on the Hall–Patch relationship, the yield strength of SZ was markedly improved. According to former research, α phase could nucleate from β matrix during severe plastic deformation and transforms into α’ martensite [29]. It is reasonable to believe the existence of α phase. These particles also trap movement of dislocations and contribute to high strength. In contrast, obvious slip bands develop on the surface of the micropillar in HAZ during the whole compression test without forming a sharp section, which promotes the plasticity of the the D-F FSPed specimen. Compared with nanoscale and submicroscale grains, the coarser grains have better plasticity. The combination of SZ and HAZ constructs a gradient structure, improving the yield strength and maintaining the plasticity of the material.

4. Conclusion

In summary, we obtain a gradient structure by using friction stir processing to process the upper surface and lower surface of the Ti-35Nb-2Ta-3Zr layers. Different shapes of stress-induced martensite appear from stir zone to heat affected zone in the double-faced FSPed specimen due to the different plastic deformation feature and heat input. Through the tensile tests and the cyclic tests, the double-faced FSPed specimen shows excellent yield strength and superelasticity. Furthermore, we investigated the deformation behavior of SZ and HAZ separately by the micropolp compression tests. Stir zone has higher strength, and heat affected zone has better plasticity, since dislocation slip contributes to much more plastic deformation. This research produces a new insight to improve β titanium alloy mechanical properties.

Declaration of Competing Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Acknowledgement

This research was funded by the National Natural Science Foundation of China (No. 31971246, No.51674167, No.51831011). High-level Innovation team and Outstanding Scholars Program of Colleges and University in Guangxi: Innovative team of basic and Clinical Comprehensive Research on Bone and Joint Degenerative Diseases.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.matdes.2020.108961.

References

