2014

The validity and inter-unit reliability of custom-made SurfTraX GPS units and use during surfing

Oliver Farley
Edith Cowan University, ollyfarley@hotmail.com

M Andrews

Josh Secomb
Edith Cowan University, j.secomb@ecu.edu.au

Tai T. Tran
Edith Cowan University, taitran151@yahoo.com

Lina Lundgren
Edith Cowan University, l.lundgren@ecu.edu.au

Follow this and additional works at: http://ro.ecu.edu.au/ecuposters

Part of the [Sports Sciences Commons](https://digitalcommons.ecu.edu.au"

This poster was originally published at:

Recommended Citation

Farley, Oliver; Andrews, M; Secomb, Josh; Tran, Tai T.; Lundgren, Lina; Abbiss, Chris; and Sheppard, Jeremy; "The validity and inter-unit reliability of custom-made SurfTraX GPS units and use during surfing" (2014). *ECU Posters.*

Authors
Oliver Farley, M Andrews, Josh Secomb, Tai T. Tran, Lina Lundgren, Chris Abbiss, and Jeremy Sheppard
THE VALIDITY AND INTER-UNIT RELIABILITY OF CUSTOM-MADE SURFTRAX GPS UNITS AND USE DURING SURFING

Objective: The purposes of the study were to: i) gain further understanding of the movement patterns during surfing using custom made GPS units which are designed for surfing (SurfTrax, Gold Coast, Australia), and ii) determine the validity and inter-unit reliability of the these units.

Methods

Experimental Approach

To gain a better understanding of the external loads of surfing, 10 surfers during competition had a GPS unit recording data (10Hz), positioned under their wetsuit on upper vertebrae. To determine validity and inter-unit reliability, nine GPS units were used during three specific tests, with units positioned across and taped down to the upper-back of two subjects. Tests consisted of a 100m sprint (similar to wave speeds), running between points in a ‘W’ shaped course (replicate bottom and top turns on a wave), and walking around a rugby field, making sharp rotation at each corner (replicate paddling and turns). Validity was determined by comparing GPS distance and actual tape measured. Inter-unit reliability was determined by comparing distance covered, peak velocity, and time to cover distance from 20 (subject one) and 25 (subject two) data sets.

Analysis

- Statistical analysis
 Descriptive statistics were calculated for all variables and reported as mean ± SD (range). Paired sample t-tests were used for GPS validity by determining the differences between actual test distance and GPS unit recordings, as well as comparisons between all units using SPSS (Version 22.0, Chicago, IL) with statistical significance set at p ≤ 0.05. The inter-unit reliability was determined using Hopkins’s reliability spreadsheet to calculate the percentage of typical errors, coefficient of variation (CV), and the intraclass correlation coefficient (ICC), and the intraclass correlation coefficient (ICC) was used to determine the percentage of typical errors, CV, and the ICC for all GPS units measures (100m sprint, p = 0.97, t = 0.07), (W course, p = 0.99, t = 0.01), (Walk, p = 0.80, t = 1.49). Effect sizes (ES) were calculated for all variables.

Results

Surfing

Surfers travelled a total distance including all movements such as paddling, and wave riding of 597m (range: 628m – 1678m) per 20 min heat, at an average speed of 16.7 km/h per wave, with peak wave riding speeds approximately 25.2km/h (19 – 33km/h). The maximal distance covered during a wave was 132m (82m – 180m).

- GPS Validity
 Validity was determined from 12 sets of data over the courses. No significant differences were reported between actual distance of the 100m sprint (101.1 ± 4.46m, p = 0.422, t = 0.824), (W course) (28.4m (28.6 ± 5.65, p = 0.931, t = 1.12) and the walk (136m) (134 ± 5.720, p = 0.266, t = 0.940). Furthermore, no significant differences were reported between all GPS units measures (100m sprint, p = 0.97, t = 0.07), (W course, p = 0.99, t = 0.01), (Walk, p = 0.80, t = 1.49). Effect sizes (ES) were calculated for all variables.

- GPS Inter-Unit Reliability
 All inter-unit reliability results are reported in Table 1 and 2 for the two subjects performing the tests over the two days.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Set 1</th>
<th>Set 2</th>
<th>Set 3</th>
<th>Set 4</th>
<th>Set 5</th>
<th>ICC</th>
<th>% Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Speed</td>
<td>15.6 ± 2.45</td>
<td>15.2 ± 2.40</td>
<td>14.7 ± 1.95</td>
<td>14.5 ± 1.87</td>
<td>14.3 ± 1.82</td>
<td>14.2 ± 1.80</td>
<td>14.1 ± 1.78</td>
</tr>
<tr>
<td>Wave</td>
<td>28.4 ± 5.65</td>
<td>28.2 ± 5.62</td>
<td>28.1 ± 5.59</td>
<td>28.0 ± 5.57</td>
<td>27.9 ± 5.55</td>
<td>27.8 ± 5.53</td>
<td>27.7 ± 5.50</td>
</tr>
<tr>
<td>Walk</td>
<td>134 ± 5.720</td>
<td>133 ± 5.710</td>
<td>132 ± 5.690</td>
<td>131 ± 5.670</td>
<td>130 ± 5.650</td>
<td>129 ± 5.630</td>
<td>128 ± 5.610</td>
</tr>
</tbody>
</table>

Conclusions

The validity of the GPS units demonstrated valid measures with no significant differences being reported between measures (Small (ES)), and moderate (0.7) effect size (r) between 45 GPS recordings do indicate slight difference. The inter-unit reliability revealed good levels of reliability when measuring the peak speed per test (0.95 to 0.93). Likewise, distance and times recorded for the 100m sprint and the walk had also good levels of repeatability (0.90 to 2.40). The ‘W’ course measures were reported to have moderate levels of repeatability for distance and time (0.85 to 9.50).

The application of GPS during surfing has provided valid insights of the sport and is a simple piece of technology to place under the wetsuit to gather important performance data, which is useful in designing training programs and testing protocols. The activities associated with surfing should be interpreted with caution, particularly peak velocities and distance travelled while surfing on a wave. As surfers are often riding horizontally along the wave, and going from the top to the bottom of the wave, GPS units record changes in horizontal direction; therefore wave riding at speed and turning (>20km/h) are likely to be slightly overestimated, with total distances at low speed (<10km/h) potentially underestimated.