2012

Visual Memory Improvement in Recognition

Allison Prandl

Edith Cowan University
Visual memory improvement in recognition

Allison Prandl
School of Social Science and Psychology, Edith Cowan University, Perth, Western Australia
Rationale

• In 2008 Jaeggi and her colleagues demonstrated that fluid intelligence could be improved by training on a visual working memory \(n \)-back task.

• While improvement on a simple working memory test was noted, no improvement in working memory capacity was found.

• Preece (2011) and Palmer (2011) found that \(n \)-back training did not improve fluid intelligence. Furthermore Palmer (2011) found that training on a general knowledge/vocabulary task did improve fluid intelligence.

Purpose of this study
• To investigate whether \(n \)-back training can increase visual recognition memory.

Hypothesis
• After training using the single \(n \)-back task, participants’ scores on a test of visual recognition memory will be significantly higher in comparison to participants who undergo general knowledge/vocabulary training.
Method

• Mixed factorial design

• Between-subjects factor - 2 levels (single n-back task and combined general knowledge/vocabulary task)

• Within-subjects factor - 2 levels (pre-training and post-training)

• Dependent variable - raw test scores of Test 13, Picture Recognition (WJ III)

• Initial testing

• 20 days of training over a 30 day period

• Final testing phase
Participants

- 47 participants in total completed the training task
- 21 participants in the active control group
- 26 participants in the experimental group
- Participants’ ages ranged from 18 to 68 ($M = 35.91$) in the n-back group, and ($M = 40.44$) in the active control group.

Materials

- Test 13, Picture Recognition of the Woodcock-Johnson III Test of Cognitive Abilities (2001) (Fig 1)
- Experimental group - n-back training task software obtained from Brainworkshop (n.d) and modified to replicate the software used by Jaeggi et al. (2008) (Fig 2)
- Active control group - Definetime, vocabulary task accessed via the East of the Web (n.d.) website and Who Wants to be a Millionaire accessed via the Real Player Games (n.d.) website (Fig 3)
• Interaction between the training group and pre-post Test 13 scores was non-significant indicating that type of training did not have an influence over improvement in visual recognition memory scores, SPANOVA $F(1,42) = .016$, $p = .899$, partial $\eta^2 < .001$.

• Overall participants significantly improved in their Test 13 scores from pre- to post-test SPANOVA $F(1, 42) = 15.515$, $p = < .001$, partial $\eta^2 = .270$.
Follow-up Interviews

• Participants spoke about how motivating they found the Definetime task.
• Participants spontaneously described how they used shape recognition strategies to obtain high scores (Fig 1).

Figure 1. Example of shapes used by participants for recognition.
Active control groups

- **Definetime** - those who were higher scorers in Definetime had a **significantly higher** gain in Test 13 scores than those in the lower gain group, one-way between groups ANOVA $F(1,19) = 6.864, p = .017, \eta^2 = .265$. This suggests that high Definetime scorers increased their visual recognition memory in comparison to low Definetime scorers.

- **Who wants to be a Millionaire** - there was **no significant difference** in gain in Test 13 scores between the low and high Who Wants to be a Millionaire scoring groups, one-way between groups ANOVA $F(1,19) = .811, p = .379, \eta^2 = .041$. This suggests that there was no difference in visual recognition memory improvement between the low and high Who Wants to be a Millionaire scorers.

Experimental group

- **N-back** – there was **no significant difference** in gain in Test 13 scores between the low and high n-back scoring groups, one-way between groups ANOVA $F(1,23) = .879, p = .358, \eta^2 = .037$ (Fig 6). This suggests that there was no difference in visual recognition memory improvement between the low scoring n-back group and the high scoring n-back group.
Table 1. Means and standard deviations of Test 13 gain in low and high performing groups.

<table>
<thead>
<tr>
<th>Training Group</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Definetime</td>
<td>0.40</td>
<td>1.71</td>
</tr>
<tr>
<td>Millionaire</td>
<td>1.70</td>
<td>2.11</td>
</tr>
<tr>
<td>N-back</td>
<td>0.46</td>
<td>2.47</td>
</tr>
</tbody>
</table>
Conclusion

• Training using the single n-back task does not significantly increase visual recognition memory scores when compared with general knowledge/vocabulary training.

• Participants who obtain high scores in Definetime improve their visual recognition scores significantly more than participants who have low scores in Definetime.

• Participants who have high scores in Definetime use shape recognition strategies.
Questions for further research

• Is visual recognition memory improved through training?

• Is Definetime a better visual recognition training task than n-back training?

• Is the n-back task in the single n-back form a visual recognition training task?

• Is Definetime a visual recognition training task?

• Was Jaeggi (2008) incorrect to conclude that n-back training can improve fluid intelligence?

• Do motivational factors affect performance on cognitive training tasks?

• Is visual recognition the driving influence behind the fluid intelligence gains demonstrated by Jaeggi (2008), Preece (2011) and Palmer (2011)?
References

