2010

Learning a foreign language with a collaborative web-based task, processes and performances.
Apprendre une langue étrangère à partir d'une tâche collaborative sur Internet : processus et performances.

Frédérique Penilla
Edith Cowan University

This thesis is presented in fulfilment of the requirements for the degree of Doctor of Philosophy and Doctorat en Sciences du langage - Didactique et linguistique
Faculty of Education and Arts, Edith Cowan University, and, Laboratoire de linguistique et didactique des langues étrangères et maternelles (LIDILEM) UFR Sciences du langage, Université Stendhal - Grenoble 3.

Recommended Citation

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/436
Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study.

The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following:

• Copyright owners are entitled to take legal action against persons who infringe their copyright.

• A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth).

• Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Learning a foreign language with a collaborative Web-based task: Processes and performances

Apprendre une langue étrangère à partir d'une tâche collaborative sur Internet : processus et performances

By

Frédérique Penilla

Master of Applied Linguistics
Agrégation d'Anglais

This thesis is presented in fulfilment of the requirements for the degree of

Doctor of Philosophy
and
Doctorat en Sciences du langage - Didactique et linguistique

Faculty of Education and Arts
Edith Cowan University
and
Laboratoire de linguistique et didactique des langues étrangères et maternelles (LIDILEM)
UFR Sciences du langage
Université Stendhal - Grenoble 3

2010
A mes parents,

A Alice, Julian, Luke et Nelly

“Tell me, and I will forget.
Show me, and I may remember.
Involve me, and I will understand.”
Confucius
USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.
Abstract

Within language teaching and learning, tasks have been advocated for use as they are thought to set up ideal conditions for language acquisition to occur. With the emergence of the Internet in the last decade, and the deployment of technology in schools, Web-based tasks, referred to as Computer-assisted Language Learning (CALL) are being used by an increasing number of teachers.

Teachers who employ Web-based tasks in their classrooms, commonly set these up so that learners complete them in a collaborative mode. This requires learners engaging in a process of task negotiation and, at times, task redefinition, which in turn requires more than just linguistic knowledge from the learners.

The purpose of the present research was to identify the impact of Web-based tasks both on the learning process and the learners’ performances. Three intact classes from French high schools, consisting of learners of English as a foreign language, completed a Web-based task. The product of the different stages of its completion and the corresponding video recordings were the database for this study. Attitude questionnaires and cultural awareness tests were also collected and analyzed. In doing so, issues of attitudes and motivation as well as learner competence and language proficiency were examined. These were documented in different experimental settings, including in turn ICT and/or collaboration.

The results suggest tasks, whether Web-based or not, do not hinder language production and, in fact, learners respond favourably to them, especially when working collaboratively. Further, the study shows that collaboration has measurable positive effects on the learners’ attitudes, processes and performances. These include: positive outcomes in relation to the learners’ persistence of effort; their involvement with the task; their understanding of the task’s implicit demands; their quality of writing; the products they ultimately produce; and the processing of higher-order skills. Yet the findings also suggest that these benefits are somehow diminished when technology is used, although this in turn is affected by the learners’ familiarity with the tasks and their levels of technological literacy. Even so, these results raise the question of how Web-based tasks can be best implemented in language classrooms, and suggest that further research is still required in this area.
KEYWORDS: English as a foreign language (EFL), second language acquisition, computer-assisted language learning (CALL), Web-based tasks, motivation, collaboration, low-achieving learners.
Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

i. incorporate without acknowledgement any material previously submitted for a degree or diploma in any institution of higher education;

ii. contain any material previously published or written by another person except where due reference is made in the text of this thesis; or

iii. contain any defamatory material.

Signed:

Date: 11 January 2011
Acknowledgements

My profound interest in applied linguistics was first aroused by Prof. Mike Breen who taught in my Master’s course back in 1998. I would like to thank him for this initial spark and the lasting impression both his views and his pedagogy made on me.

My heartfelt gratitude goes to my supervisor Prof. Rhonda Oliver from Edith Cowan University, who accompanied me during the many years it took to complete this thesis. Without her constant support through the good and bad times, her invaluable comments and constructive criticisms, not to mention her eternal patience, I could not have come close to what I have achieved today.

I am also grateful to my co-supervisor Prof. François Mangenot for his confidence in my abilities and support in finalizing the thesis. I thank him for giving me the opportunity to establish this cotutelle with the University of Grenoble and feel honoured that he asked me to co-write an article in *Le français dans le monde - Recherches et applications*.

I am greatly indebted to Prof. Françoise Raby who entrusted me with one of the research axes of the ESCALE project. I was always impressed with her quick mind and sometimes challenged by her ‘one idea per minute’ disposition. I hope I have met her expectations.

I extend my deepest thanks to Dr Laurent Lima for his kind help in sorting out some of my statistics. I would also like to thank the teachers and students who took part in the ESCALE project, as well as the other researchers, Prof. Françoise Campanale and Prof. Jean-François Bonneville for sharing their expertise with me. Thank you also to Colin for his meticulous proofreading, and to Linda for her effective formatting of the thesis.

During the early stages of my PhD, I was lucky enough to have my teaching load reduced by half so that I could dedicate time to my research. I thank the INRP (National Institute for Pedagogic Research) for giving me such opportunity.

Lastly, I thank my husband Thomas for his ever-loving support and for taking care of our home when I could not.
Table of Contents

USE OF THESIS ... I
ABSTRACT .. III
DECLARATION .. V
ACKNOWLEDGEMENTS .. VI
TABLE OF CONTENTS .. VII
LIST OF TABLES ... X
LIST OF FIGURES ... XI
LIST OF ACRONYMS ... XIV

CHAPTER 1 INTRODUCTION .. 1
1. Background 1
2. Scope... 4

CHAPTER 2 LITERATURE REVIEW ... 7
1. Background: Learning Theories ... 8
 1.1 Behaviourism .. 8
 1.2 Nativism .. 11
 1.3 Cognitivism ... 17
 1.4 Constructivism ... 21
 1.5 Beyond constructivism ... 23
 1.6 Conclusion ... 29
2. SLA process ... 30
 2.1 Principles .. 30
 2.2 Learner factors .. 31
 2.3 SLA Model ... 32
 2.4 Synthetic vs. analytic syllabus approaches ... 34
3. Tasks ... 36
 3.1 Definition of tasks ... 36
 3.2 Tasks and SLA theories .. 36
 3.3 Task processes .. 37
 3.4 Project pedagogy ... 38
 3.5 The question of adequacy of tasks .. 45
4. Computer-Assisted Language Learning ... 46
 4.1 Definition of CALL ... 46
 4.2 The perceived benefits of CALL .. 48
 4.3 Pedagogic practices ... 49
 4.4 Learner cognition .. 51
5. Conclusions and Hypotheses ... 52
6. Research Questions ... 53
CHAPTER 3 METHOD ... 55
1. Background ... 55
2. Participants .. 57
3. Research Design .. 58
4. Research Materials ... 59
 4.1 Project outline ... 59
 4.2 Task characteristics and description 61
5. Procedure ... 67
6. Data Analysis ... 68
 6.1 Data about the learners .. 69
 6.2 Data about the learning process 74
 6.3 Data about the products of the learners' activity 75
 6.4. Summary ... 82

CHAPTER 4 FINDINGS: THE LEARNERS .. 85
1. Learners Profile .. 85
 1.1 Identifying low-achieving learners 85
 1.2 Learners’ background .. 88
 1.3 Computer use .. 90
2. Motivation for the Project .. 91
 2.1 Attitude towards the task .. 91
 2.2 Attitude towards ICT .. 104
 2.3 Attitude towards collaboration .. 108
 2.4 Attitude of low-achievers ... 109
 2.5. Publication as a factor of motivation 112
3. Learners’ Awareness of Content Domain 119
 3.1 Effect of collaborative and ICT variables and interaction on content knowledge acquisition ... 120
 3.2 Effect of language proficiency .. 124
4. Learners’ Self-Evaluation of Task Completion 125
 4.1 Difficulties in completing the task 125
 4.2 Self-assessment of performance on task 127
 4.3 Goal achievement ... 129

CHAPTER 5 FINDINGS: THE LEARNING PROCESS 133
1. On-Task Activity ... 133
 1.1 Working independently .. 133
 1.2 Learners’ actions .. 135
2. The Task and the Cognitive Load ... 142
 2.1 Effect of ICT variable .. 146
 2.2 Effect of the collaboration variable 148
 2.3 Effect of group setting .. 149
 2.4 Effect of language proficiency 150
List of Tables

Table 1 Synthetic vs. Analytic Syllabuses .. 35
Table 2 Acronyms used for ICT-based education .. 47
Table 3 Task settings .. 59
Table 4 Teaching procedure outline .. 61
Table 5 Awareness tests (pre- and post-) and coding procedure 71
Table 6 Awareness tests (delayed post-) and coding procedure 73
Table 7 Analysis of the final product .. 77
Table 8 Coding of the final product .. 78
Table 9 Analysis of the written work .. 80
Table 10 Coding of the written work ... 81
Table 11 Data analysis summary .. 83
Table 12 Low-achievers in focus groups ... 87
Table 13 Low-achievers' attitude towards ICT pre- and post-task 110
Table 14 Low-achievers' attitude towards collaboration in the collaborative/paper group (post-task) .. 111
Table 15 Awareness tests results according to group setting 120
Table 16 Repeated-measures ANOVA (Analysis of Variance) on awareness tests .. 121
Table 17 Preliminary task scores according to group setting 143
Table 18 T-test for the various question types of the preliminary tasks (collaborative/paper variable) .. 145
Table 19 Preliminary tasks results for basic knowledge processing (ICT variable) ... 147
Table 20 Preliminary tasks results for advanced knowledge processing (ICT variable) .. 148
Table 21 Preliminary tasks results for basic knowledge processing (collaboration variable) ... 148
Table 22 Preliminary tasks results for advanced knowledge processing (collaboration variable) ... 149
Table 23 T-test for language proficiency (question type variable) 151
Table 24 Macro-tasks result ... 159
Table 25 Final product scores according to group setting 162
Table 26 Writing subtasks results ... 167
Table 27 Low-achievers’ written performance .. 170
List of Figures

Figure 1. SLA process ... 33
Figure 2. Task processes .. 38
Figure 3. Task-based syllabus design ... 41
Figure 4. Screen capture of the Webquest scenario 66
Figure 5. Distribution of QPT scores among participants 86
Figure 6. Participants’ QPT scores in each group setting (n = 77) 87
Figure 7. Distribution of teachers’ evaluation records for all 77 participants 88
Figure 8. Pre-task learner attitude to the project 92
Figure 9. Comparison of pre- and post-task attitudes 93
Figure 10. Post-task learner attitude to the project 93
Figure 11. Positive post-task attitudes .. 94
Figure 12. Change of attitude towards the task in the individual/paper group 95
Figure 13. Change of attitude towards the task in the individual/ICT group 95
Figure 14. Change of attitude towards the task in the collaborative/paper group 96
Figure 15. Change of attitude towards the task in the collaborative/ICT groups 97
Figure 16. Learners’ expectations (pre-task) in the collaborative/ICT groups 98
Figure 17. Learners’ experience (post-task) in the collaborative/ICT groups 98
Figure 18. Teacher 1’s learners’ attitudes (pre-task) 99
Figure 19. Pre- and post-task positive attitudes in collaborative/ICT groups 100
Figure 20. Teacher 3’s learners’ attitudes (post-task) 101
Figure 21. Change in Teacher 1’s learners’ attitude to the task 102
Figure 22. Change in Teacher 2’s learners’ attitude to the task 102
Figure 23. Change in Teacher 3’s learners’ attitude to the task 103
Figure 24. Citation of positive aspects of working with ICT (pre-task) 104
Figure 25. Citation of negative aspects of working with ICT (pre-task) 106
Figure 26. Pre-task perception of collaboration 108
Figure 27. Post-task perception of collaboration 109
Figure 28. Effect of marking and publishing on learner motivation (pre-task) 113
Figure 29. Main effect of publishing on learner motivation according to group setting (pre-task) ... 114
Figure 30. Main effect of marking on learner motivation according to group setting (pre-task) ... 115
Figure 31. Effect of marking and publishing on learner motivation (post-task) 115
Figure 32. Main effect of publishing on learner motivation according to group setting (post-task) .. 116
Figure 33. Effect of marking on learner motivation according to group setting (post-task) .. 117
Figure 34. Score variation in pre- and post- awareness tests results (all participants) ... 120
Figure 35. Score variation in pre- and post- awareness tests results according to group setting ... 122
Figure 36. Awareness tests predictability .. 123
Figure 37. Score variation in pre- and post- awareness tests results among low-achievers in the four group settings .. 125
Figure 38. Difficulties according to group setting .. 126
Figure 39. Difficulties in Teacher 3’s A and B groups .. 126
Figure 40. Main source of learner difficulty according to group setting .. 127
Figure 41. Perceived effect of project on language competence, in comparison with standard class work .. 128
Figure 42. Perceived effect of project on creative competence, in comparison with standard class work .. 128
Figure 43. Perceived effect of project on instrumental competence, in comparison with standard class work .. 129
Figure 44. Positive learners’ perception of own achievement .. 130
Figure 45. Negative learners’ perception of own achievement .. 130
Figure 46. Classification of the 30-question preliminary tasks according to cognitive difficulty .. 143
Figure 47. Preliminary tasks results according to knowledge type .. 144
Figure 48. Project completion by learners .. 155
Figure 49. Percentage of completion in phases 1 and 2 and for the whole project .. 156
Figure 50. Project results according to group setting .. 158
Figure 51. Achievement in meeting the requirements of the task (explicit and implicit) according to collaboration variable .. 160
Figure 52. Achievement in meeting the requirements of the task (explicit and implicit) according to group setting .. 162
Figure 53. Low-achievers’ task achievement .. 164
Figure 54. Comparison of standard written work with on-task writing production scores according to group setting (all 3 criteria) .. 165
Figure 55. Comparison of standard written work with on-task writing production scores according to group setting (content/form criteria) 166
Figure 56. Analysis of regression for the written work 168
Figure 57. Comparison of linear regression for the written work in individual and collaborative groups ... 168
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL</td>
<td>Computer-Assisted Language Learning</td>
</tr>
<tr>
<td>CEFRL</td>
<td>Common European Framework of References for Languages</td>
</tr>
<tr>
<td>EFL</td>
<td>English as a Foreign Language</td>
</tr>
<tr>
<td>FoF</td>
<td>Focus on Form</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>L1</td>
<td>First language</td>
</tr>
<tr>
<td>L2</td>
<td>Second / foreign language</td>
</tr>
<tr>
<td>LL</td>
<td>Language Learning</td>
</tr>
<tr>
<td>NFM</td>
<td>Negotiation For Meaning</td>
</tr>
<tr>
<td>SLA</td>
<td>Second Language Acquisition</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

“I never know what I think about something until I read what I've written on it.”
William Faulkner

The current research focuses on the use of the Internet in English as a Foreign Language (EFL) classes. Specifically, the purpose of this research is to examine the effect of Web-based tasks on the language produced by the students when they undertake these, including both the product or object of study, and the results from the process of engaging in the tasks.

1. Background

In the last two decades Information and Communication Technology (ICT) has undergone considerable development and, as a consequence, has greatly improved. At the same time, teachers have looked into ways of integrating the use of computers into their classroom practice while researchers have implemented numerous research projects concerning the use of ICT-based tasks. These include knowledge hunts, Webquests, online communication and so forth.

The teaching community has increasingly accepted that computers and the Internet can enhance the process of learning, including language learning (Levy & Stockwell, 2006; Louveau & Mangenot, 2006; Mangenot, 1998; Mangenot & Penilla, 2009). However, while it can reasonably be argued, that technology does impact on and changes the learning process and outcomes (Rabardel, 1995; Rabardel et al., 1998; Rabardel & Samurçay, 2001), there still remains insufficient empirical evidence to substantiate the belief that such change constitutes an improvement in all respects (Egbert & Petrie, 2005; Levy & Stockwell, 2006; Narcy-Combes, 2005). In fact, it is claimed that the efficiency and usefulness of Computer-Assisted Language Learning (CALL), especially when it is achieved through collaborative tasks, has yet to be fully tested (Raby, 2005, 2007, 2008; Raby, Baillé, Bressoux, & Chapelle, 2004).
CALL can be of two types, synchronous (at the same time) or asynchronous (at different times) communication. Both types have been the subject of numerous investigations by enthusiastic teachers and a number of researchers, each trying in their own way to experiment with and investigate the benefits (or otherwise) of CALL practices. In fact, over the years, technology has become a much debated issue in the language learning field and an area generating enormous interest. This is demonstrated by the growing submissions of articles in peer-reviewed, paper-based (CALL, ReCALL, System) and online journals such as LLT (Language Learning and Technology) or ALSIC (Apprentissage des Langues et Systèmes d’Information et de Communication), as well as the increasing number of participants in international conferences such as CALICO or EUROCALL.

For practitioners, there is an ever-increasing number of ‘ready-made’ lessons accessible through the Internet for students and teachers to choose from and work through (Dodge, 1995). As a consequence CALL lessons are becoming more common in some language classes, despite their utility for acquisition not being fully established and clear guidelines as to how ICT-based courses should be implemented not clearly specified (Levy, 2007).

Thus it can be seen that over the years there has been a steady evolution of CALL. In the early 1990s, when a school was adequately equipped, computers were tentatively used in language teaching by small groups, often for grammar drills. Teachers also encouraged use of computers as the learners could complete exercises at their own pace. It was also seen as a way of implementing differentiated pedagogy, allowing for individual work and catering for specific needs. Thus technology became a way of doing things more efficiently, providing opportunities for autonomy and addressing the students’ needs. In recent times research has begun to emerge providing evidence for these purported outcomes (Chapelle, 2010; Garrett, 2009; Kessler, 2007; Levy, 2009; Narcy-Combes, 2005; Otto & Pusack, 2009; Raby et al., 2008; Smith & Lafford, 2009; Son, 2007; Toyoda, 2001; Wu, Franken, & Witten, 2009; Zourou, 2009).

By the mid 1990s, CD-Roms gradually augmented many textbooks. Next, pictures and sounds - becoming known as “multimedia resources”, were introduced to become an integral part of both computers and teaching in general. Although they were still little more than elaborate pages of a textbook, the attractiveness of the
product enhanced the original text. The incorporation of work with CD-Roms by teachers was often accomplished because this was seen as motivational, that is, as an incentive for their students.

The massive democratization of the Internet in the late 1990s also led to a dramatic increase in the number of activities that could be performed when using computers. Not surprisingly, a number of language teachers could see the immediate advantage and tremendous potential of such a multimedia device that allowed for unrestricted access to an infinite number of authentic resources. Yet, at that time, such teachers were still in a minority. For example, a publication of the French General Inspection for National Education - IGEN reported unequal development of ICT practices in French secondary schools (Bérard & Pouzard, 1999). They noted that when ICT-based practices were used, these were essentially performed in ways that were simply computer-based forms of more traditional pedagogic practices, such as writing to pen friends or undertaking library search, rather than new modes of teaching/learning tasks. They also noted that amongst those teachers who were using computers, motivating students was the main reason given for the use of this technology in their teaching. However, this ‘motivation’ was rarely analyzed or defined. In fact, although computers were becoming prevalent in many facets of society in that decade, they still remained largely peripheral in language education settings (Hubbard & Levy, 2006).

However, by the 2000s, with ongoing improvement and the dissemination of rapidly developing technologies most education institutions, teachers' colleges and didactic literature were promoting the use of computers within classroom settings, including for collaborative work. As a consequence its use became much more widespread during this decade (Raby, 2007; Raby et al., 2008). Despite this, there still was not a significant shift in pedagogic practices, particularly as teachers soon realized they had to cope with added potential problems of collaboration, evaluation, technical difficulties and so on (Raby, 2009a). For instance, IGEN evaluation reports on the use of computers and Internet practices in French middle and high schools in the 2000s consistently described the reluctance of many teachers to use computer applications in their teaching. This was in spite of the change that had occurred in resourcing which meant that most high schools in France were properly equipped with at least one computer room and with Internet access. Perhaps the reluctance of
the teachers and the impact of this on their pedagogic practice can be explained by
the way languages in France are taught. Specifically, foreign languages are
considered literary subjects and thus pedagogy is seldom based on communicative
tasks, but more often on language exercises and language practice such as writing in
the form of essays. This pedagogical practice prevailed despite the attention drawn to
the new tasks by a number of researchers into the teaching of both French and
English as foreign languages, many of whom have focused on the study of
computer-based tasks (Demaizières & Narcy-Combes, 2005; Louveau & Mangenot,
2006; Mangenot, 2003; Mangenot & Penilla, 2009; Mangenot & Soubrié, 2010, In
press; Mangenot & Zourou, 2007; Soubrié, 2010).

Amongst those teachers who have attempted to integrate tasks in general and
computer tasks in particular, a variety of practices has begun to emerge. These are
based on the assumption that collaborative work is more effective than other
methods; that computers and the use of the Internet have the potential to enhance
learning; and that the use of computers is motivating for learners. This occurs
because tasks are often perceived as socially more pertinent, and that by granting a
certain amount of freedom to these individuals, a positive learning environment is
created (Dörnyei, 2009b).

Contributing to the motivational aspect of computers is that when ICT-based
collaborative learning is employed, because of the variety of authentic resources now
available, teachers tend to devise learning tasks rather than repeating traditional
learning exercises and drills. Further, the use of additional tasks means that students
are not evaluated solely on linguistic criteria, but on such things as task completion,
participation, collaboration and task understanding. Arguably these are positive
outcomes for those students who are low-achieving linguistically (Raby, 2005, 2007,
2008), for, even though they cannot perform in a totally acceptable linguistic
manner, they can still participate in the task and contribute to its completion.

2. Scope

Webquest projects, a concept initiated by Dodge (1995), are one type of
computer-based tasks currently in use in some language classrooms. These usually
involve the completion of a global task, often through collaboration. These Internet
tasks are based on real world resources, mirroring real life activities. Anecdotal
evidence suggests that Webquests are motivating for students, particularly for low-achievers (Penilla, 2008; Raby, 2008). However, beyond what Raby (2007) has labelled the “hook” function of such tasks, their contribution to language learning is unclear. Technology-based teaching is indeed the subject of many myths, amongst them efficacy, relevance, freedom, autonomy and enhancement. Therefore a need remains for empirical research to investigate what language learners actually do when they undertake computer task based learning. Hence, the current research aims to investigate: 1) whether performing tasks on the Web, with the help of a computer, has a significant impact on the learners’ language acquisition and performance; and, 2) how collaboration affects this process. These questions are examined particularly with respect to low-achieving learners, as it is suggested collaboration helps unsuccessful language learners (Ghaith & Yaghi, 1998).

In particular, this research attempts to provide an insight into the use of CALL tasks, especially Webquest tasks, by documenting how learners proceed to complete them in a language class, and examining their effects on learner performances. The study aims to examine the language used by students acquiring English as a Foreign Language (EFL) when they are engaged in computer tasks; this will assist in determining whether or not such practices are conducive to second language acquisition. If the latter is found to be the case, then this research will document some of the ways in which this occurs.

The literature review that follows in Chapter 2 aims to frame the research, detailing theories relevant to both second language acquisition and completing CALL tasks. It will also show evidence of gaps in scientific knowledge, emphasizing the need for empirical research to be undertaken in this area. Following this review the research questions are formulated. In Chapter 3, the research methodology employed in this research is explained. The findings pertaining to the learners, the learning process and the product of the learners’ activity are presented respectively in Chapters 4, 5 and 6. Finally, the conclusions drawn and recommendations made are outlined in Chapter 7.
Parallel to the development of general learning theories, and often drawing from them, various and concurrent hypotheses have been proposed about the manner in which second language acquisition occurs. In 1998, Pica noted that the field of Second Language Acquisition (SLA) did not have a single, coherent theory to describe, explain and predict second language learning. Similarly, and more recently, VanPatten and Williams (2007) remark that various propositions can be made to explain and predict how a second language (L2) is learned, making SLA an umbrella term encompassing many contrasting phenomena. Each theoretical proposition focuses on a particular aspect which is viewed and discussed from a particular standpoint, but also borrows from general learning research and, to some extent, follows its developments. Because of this, various constructs have been developed to explain why and how learners acquire another language, and to describe the way these quite disparate learning theories are related.

As with learning more generally, distinctive pedagogical models have been posited as to how a second language can best be learned. While behaviourist views strongly influenced the early days of SLA teaching practice which deemed that language learning could occur through mere exposure to the language and subsequent reinforcement following use, cognitive-interactionists along with socio-constructivists currently disagree with this view.

The first section of this chapter briefly describes the characteristics of the different propositions that have been put forward to explain and predict the act of learning. In this review, general learning theories are outlined and then linked to our understanding of the SLA process. This is followed by a critical evaluation and pedagogical implications of each, with a particular focus on those relevant to the emergence of CALL tasks.
1. Background: Learning Theories

Researchers have generated a number of theories in order to better understand and explain human behaviour. Scholars working in disciplines such as sociology, psychology, linguistics and education have made great contributions in the field of learning which have, in turn, contributed to the theoretical perspectives of second language acquisition. Like other social sciences, theories in this field are dynamic in that hypotheses are constantly evolving as new information about language is produced.

So far, three prominent theories have been developed to explain learning: behaviourism, cognitivism, and constructivism. Each of them derives from distinct philosophies whether it be nativism or empiricism, or even borrowing sometimes from both views. In turn, each has generated numerous subsidiary theories, such as socio-constructivism, socio-cognitivism, interactionism and connectionism.

1.1 Behaviourism

Behaviourism, which hit the height of its popularity in the 1950s and 1960s, is mostly concerned with the outcomes of learning since it acknowledges that mental processes cannot be directly observed. That is, maintaining the internal mental activities unaccounted for, behaviourists focus on observable behaviour that is managed through a process of strengthening and weakening of responses. Further, they assume that desirable behaviour needs be enforced for learning to occur.

Pavlov (Clark, 2004) first revealed a conditioning process at work while observing animal behaviour, but it is Watson (1994, reproduced from original publication in 1913) and Skinner (1957), who endorsed this stimulus-response pattern conditioning, and focused on changes in observable behaviours leading to direct applications being envisaged in learning/teaching. Skinner’s operant conditioning theory integrated four mechanisms: positive or negative reinforcement, absence of reinforcement and punishment, all of which could be utilised in order to obtain the desired behaviour from learners.

Probably most influential in Skinner’s work is his belief that “even such high level capabilities such as critical thinking and creativity could be taught in this
manner (operant conditioning); it was simply a matter of establishing chains of behavior through principles of reinforcement” (Roblyer, 2000).

These “chains of behaviour” lead to the principle of programmed instruction that Skinner and other behaviourists felt was “the most efficient means available for learning skills” (Roblyer, 2000). Programmed instruction means carefully sequencing and developing the instruction itself, being based on three principles:

1. Instructions are broken down into extremely small steps or building blocks;
2. People learn best by making active responses to each step; and
3. Behaviour is learned (and recurs) when it is reinforced.

Thus, programmed instruction teaches a complex skill that “... consists of a long series of small steps in which learner reads small bit of information, answer a question about it, and get reinforced for correct answer ...” (Tiene, 2000).

However these findings were strongly criticized (Chomsky, 1959), these arguments, together with Piaget’s work, laying the basis for the emergence of the cognitive movement in psychology and human sciences. More recently Staddon (2006) has further argued that, while Skinner focused on the impact of an initially spontaneous behaviour by way of these four mechanisms, the learning/teaching challenge primarily lay in initiating this first occurrence of behaviour, an issue that Skinner had failed to address.

1.1.1 Behaviourism and SLA

Influenced by this view in the 1950s and 1960s, language was essentially seen as a system of habits: learning proceeds by producing a response to a stimulus and receiving either positive reinforcement, if the intended meaning was understood, or negative reinforcement. Further, the belief was that if learners receive enough positive reinforcement for a certain response, it will become a habit. Thus, reinforcement was deemed vital for learning a language. Pedagogy was similarly influenced by this belief: teaching a language should involve much imitation and pattern repetitions to instil proper habits in the learner. Therefore, language learning was taught in such a way as to reflect a mechanical process equivalent to learning a new set of habits.
1.1.2 Critical evaluation of behaviourism

One of behaviourism’s most lasting legacies to education is its influence on classroom management. “Skinner and others viewed the teacher’s job as modifying the behaviour of students” (Roblyer, 2000). Observations reveal educators frequently use a system of rewards and punishments as reinforcements for desired classroom behaviours, including language learning.

The weakness of this educational practice is that it is based on the premise that the teacher is in control and the students need to be controlled. Often, the teacher is seen as responsible for filling the students’ mind with facts and information. With so much energy focused on control, both physically and mentally, little energy or thought is left for focusing on engaging students in concepts and activities that motivate them to learn independently. Thus students’ initiative, motivation and responsibility are absent from such behaviourist perspectives.

Therefore many have found behaviourism too limiting as it places too much emphasis on lower-order skills such as memorization. By the 1970’s, critics felt this was unable to account satisfactorily for the learning and teaching of higher-order thinking skills such as synthesis, analysis, hypothesizing and problem-solving or evaluation and language learning more generally.

1.1.3 Pedagogical implication of behaviourism

Despite this, behaviourism continues to exert pedagogical influence, even today this being apparent in many schools and classrooms. Whilst behaviourism may have no explanatory power with regard to language learning (Long & Doughty, 2003a), many of the pedagogical practices used in language classrooms are based on the premise that it does. For example, this seems to be a case for those who advocate language practice exercises and language repetition drills, which the earlier SLA literature documented. Memorization, pattern drills and reinforcement are still commonly used in classrooms, especially in teaching low proficiency level learners. Many teachers still strongly believe that by providing practice drills and reinforcing correct production, learners will eventually “learn something in the end”.

10
1.1.4 Conclusion

Behaviourism has not stood the test of time, nor gained empirical evidence as an SLA theory. As a result, over the years, learning theories have progressively shifted away from an initial behaviourist approach which was also implemented in language classrooms through such methods as Audio-Lingual and Total Physical Response approaches; behaviourism fell into relative disgrace, at least from a theoretical perspective. It should be noted, however, that language drills and methodologies such as grammar-translation, based on this theoretical approach, still continue to be used today. As learning researchers and theorists moved their focus towards nativist and constructivist issues, SLA theory development followed the same path, and pedagogy, though at times disconnected from theory as it may be, showed some movement away from core behaviourist practices.

1.2 Nativism

1.2.1 Chomsky's perspective

According to Chomsky (1959, 1965), children are born with a special ability to discover for themselves the underlying rules of a language system. The innate component of language in human beings is called the LAD (Language Acquisition Device)/UG (Universal Grammar). The LAD contains a set of abstract principles common to all languages from which the child generates an infinite variety of sentences. Samples of language input are necessary to trigger the LAD/UG which in turns enables the child to discover for himself/herself the rules of the language.

Chomsky argues that acquiring language cannot be reduced to simply developing an inventory of responses to stimuli. When we speak, we combine a finite number of elements — words and morphemes, to create an infinite number of larger structures — sentences and discourse. Moreover, language is governed by a large number of rules and principles particularly those of syntax, which determine the order of words in sentences.

Chomsky believes children as young as five years old can, without receiving any formal instruction, consistently produce and interpret sentences they have never encountered before. This ability to use and create language despite having had only partial exposure to the allowable syntactic variants, led Chomsky to formulate his
“poverty of the stimulus” argument, which was the foundation for the new approach that he developed in the early 1960’s.

In Chomsky’s view, the reason for children’s extraordinary ability to easily master the complex operations of language is that they have an innate knowledge of certain principles that guide them in developing the grammar of their language. Language learning, from such a perspective, is facilitated by a predisposition of our brains for certain structures of language. This assertion is supported by evidence proposed by generative linguists of structural properties common to all languages in the world, in the form of ‘universal grammar’ - a shared set of syntactic rules and principles, innate and encoded in the neuronal circuitry of the human brain.

1.2.2 The natural approach

One of the most influential theoretical lines emerging from the nativist perspective is the view, promoted by Krashen (Krashen, 1985; Krashen & Terrell, 1983), that language is fundamentally acquired through exposure. Thus he developed a set of convergent hypotheses to explain second language acquisition, deriving from innatist views. Yet, his model, which entails some imitation processes and holds both a role for environmental input and nature through his ‘natural order’, may arguably be considered as partly situated in behaviourist paradigms.

In terms of language learning, the most appealing proposal of the natural approach theory is that adults can still acquire second languages, and that the ability to ‘pick up’ languages does not disappear at the critical period of puberty. Thus Krashen built upon Chomsky’s LAD proposition indicating that adults could access their innate ‘universal grammar’. This is because the theory implies adults can acquire all but the phonological aspect of any foreign language by using their ever-active LAD.

The natural approach focuses on exposure to input instead of grammar practice, and on emotional preparedness for acquisition to take place. Krashen (1983) regards communication as the main function of language and his model focuses on teaching communicative abilities with an emphasis on meaning. According to the author, acquisition can take place only when people comprehend messages in the target language. This means that linguistic competence is achieved via ‘input’ containing structures at the learner’s interlanguage + 1 level (i+1), that is,
via 'comprehensible input'. Because of their influence on communicative language learning his hypotheses concerning second language acquisition are described in detail below.

1.2.3 Krashen’s Five Hypotheses

The concern of Krashen (1983, 1987) for communicative language learning led him to propound five hypotheses.

1.2.3.1 The Acquisition-Learning Distinction Hypothesis

According to Krashen (1985), there are two independent systems of second language performance: 'the acquired system' and 'the learned system'. The 'acquired system' or 'acquisition' is the product of a subconscious process very similar to the process children undergo when they acquire their first language. It entails use of the target language within a communicative act. On the other hand, the 'learned system' or 'learning' is the product of formal instruction which requires a conscious process resulting in conscious knowledge 'about' the language, such as the knowledge of grammar rules. According to Krashen 'learning' is second to 'acquisition'. He further suggests that adults have two ways of developing competence in second languages: acquisition and learning.

"There are two independent ways of developing ability in second languages. 'Acquisition' is a subconscious process identical in all important ways to the process children utilize in acquiring their first language ...[and] 'learning' ...[which is] a conscious process that results in 'knowing about' [the rules of] language" (Krashen, 1985)

Krashen believes that the learned competence functions as a monitor or editor, that is, while acquired competence is responsible for our fluent production of sentences, learned competence makes correction on these sentences either before or after their production. The ways to develop learned competence are by analyzing the grammar rules consciously and practising them through exercises. However, the Acquisition/Learning Distinction Hypothesis contends that learning the grammar rules of a foreign/second language does not result in subconscious acquisition.

It is on this point that Krashen receives considerable criticism. In particular, his dogmatic insistence that learning can never become acquisition is refuted by McLaughlin (1987) and others who point out that Krashen never adequately defines 'acquisition', 'learning', 'conscious' and 'subconscious', and that without such
clarification, it is very difficult to determine whether subjects are learning or acquiring language. In fact, in contemporary SLA literature these distinctions are rarely if ever made.

1.2.3.2 The Natural Order Hypothesis

Based on early SLA research findings (Dulay & Burt, 1974; Fathman, 1975; Makino, 1980), Krashen (1987) further elaborated a Natural Order Hypothesis which posits that the acquisition of grammatical structures follows a predictable 'natural order'. It contends that for a given language, some grammatical structures tend to be acquired earlier than others, regardless of the learners' age or learning experience. He found there to be statistically significant evidence to reinforce this hypothesis. Nonetheless he continued to reject the idea of teaching with the help of grammatical sequencing maintaining that acquisition prevails over learning.

With regard to this second hypothesis, critics argue that the basic idea of a simple linear order of acquisition is extremely unlikely (Gregg, 1992) and that if there are individual differences then the hypothesis is neither provable nor useful. In addition, it mostly relies on first language acquisition production, wherein the cognitive development of the child coincides with his/her own language development, a situation not reflecting a typical SLA situation. However, the work of Pienemann and colleagues (1984) suggest that an order does indeed exist, and that this is true of both adult and child second language learners (see page 19).

1.2.3.3 The Input Hypothesis

Krashen (1985) consolidated his model with his Input Hypothesis that contends learners improve and progress along the 'natural order' when they receive second language 'input' that is one step beyond their current stage of linguistic competence (that is, i+1). He proposed that this input would become uptake, and that any language received while the learner is engaged in communicating would be internalized and acquired.

This Input Hypothesis posits that language is acquired as a result of an unconscious process triggered by environmental stimuli (target language exposure). As such, it could be argued that it relies on behaviourist views. However, the Input Hypothesis does not entail any of the automatized stimulus-response patterns sought in behaviorist approaches, and most importantly, it gives primacy to meaning. It
contends that input should be relevant and not grammatically sequenced. However, it should also be in sufficient quantity, Richards and Rodgers (1986) pointing out:

“... child acquirers of a first language are provided with samples of 'caretaker' speech, rough-tuned to their present level of understanding, ... and adult acquirers of a second language [should be] provided with simple codes that facilitate second language comprehension” (p. 183).

This particular hypothesis seems to be the core of the Krashen's model implying that, if other methods of teaching appear to work at times, it is because they inadvertently provide this input. Gregg (1992) contends the hypothesis to be simply an uncontroversial observation without any convincing idea as to how it works or any proof provided. Ellis (1992) further points out that Krashen had not provided a single study to explicate the Input Hypothesis. McLaughlin (1987) further argues that the concepts of a learner's level and interlanguage are extremely difficult to define, similar to the idea of i+1. In addition, there are many structures that cannot be learned through context; further no evidence exists that a learner must fully comprehend an utterance for it to aid in acquisition. Finally, McLaughlin points out that Krashen simply ignores other internal factors such as motivation and the importance of producing language for interaction.

Despite these criticisms, this hypothesis has had considerable influence on language teaching methodology.

1.2.3.4 The Monitor Hypothesis

According to Krashen (1985, 1987), the Monitor Hypothesis explains the relationship between acquisition, the subconscious and intuitive process of constructing the system of a language, and learning, the conscious learning process in which learners attend to form, figure out rules and are generally aware of their own process; it defines the role of the latter in relation to the former. The monitor edits and makes alterations or corrections as they are consciously perceived. Krashen argues that the monitoring function is the practical outcome of the learned grammar but the acquisition system is the utterance initiator. In his view, fluency in second language performance is due to what we have acquired not what we have learned. As a result, he believes adults should do as much acquiring as possible for the purpose of achieving communicative fluency. Therefore, the monitor should have only a minor role in the process of gaining communicative competence. Furthermore, this
monitoring is only triggered on provision of enough time, form-focus and knowledge of the rules, that is, metalinguistic knowledge.

The implication is that the use of this monitor should be discouraged and that production should remain with some instinct formed by ‘acquisition’. Using the monitor only halts and contrives speech since it can only check what is about to be, or has been produced.

Like all of Krashen’s hypotheses, this was also criticized. Gregg (1992) points out that restricting learning to the role of editing production completely ignores comprehension; whereas explicitly learned grammar can obviously play a crucial role in understanding speech. Similarly, in his early work McLaughlin (1987) insisted that Krashen had never demonstrated the operation of the monitor in his own or any other research.

Once more, however, this hypothesis had considerable influence on language pedagogy in general and the communicative approach in particular.

1.2.3.5 The Affective Filter Hypothesis

Finally, to explain individual differences in acquisition, Krashen (1985) formulated the Affective Filter Hypothesis embodying his view that a number of affective variables play a facilitative, but non-causal, role in second language acquisition. These variables include: motivation, self-confidence and anxiety. The author claims learners high in motivation and self-confidence, with a good self-image and a low level of anxiety are better equipped for success in second language acquisition. Low motivation, low self-esteem, and debilitating anxiety can combine to ‘raise’ the affective filter and form a ‘mental block’ that prevents comprehensible input from being used for acquisition. In other words, when the filter is ‘up’ it impedes language acquisition. On the other hand, positive affect is necessary, but not sufficient on its own, for acquisition to take place.

In its own way, this hypothesis has also been influential and the impact of affective variables continues to be carefully considered by language teachers.

1.2.4 Critical evaluation of nativism

Many argue that the nativist stances of both Chomsky and Krashen (1983, 1985, 1987), despite having received much attention and publicity, have failed to
provide a satisfactory explanation for second language development. Although most researchers such as Krashen and Long (1996) have agreed that comprehensible input is indeed essential to the SLA process, argument continues about its sufficiency. This has, in turn, led to a focus on other contributing factors. Today many theorists suggest a facilitative role for such variables as comprehensible output (Ellis, 1985; Swain, 1983, 1985, 1995, 2005), interaction (Gass, 2002; Long, 1996; Oliver, 2002; Pica, 1998) and feedback (Mackey, Kanganas, & Oliver, 2007; Mackey & Oliver, 2002; Mackey, Oliver, & Leeman, 2003; Oliver & Mackey, 2003; Pica, 1992). A review of these facilitative roles is explained in a later section.

1.2.5 Pedagogical implications of nativism

Though the five hypotheses of Krashen (1985, 1987) have been widely criticised, they have contributed quite substantially to second language pedagogy. These hypotheses have encouraged more meaningful reading and listening activities in order to supply learners with an abundance of comprehensible input. Additionally, as a result of this work, fewer grammar drills are used in classrooms than was the case previously, teachers having worked to address affective variables and incorporate classroom activities that would activate learners’ interest in learning the language.

1.3 Cognitivism

Cognitivism posits that mental structures affect learning in many significant ways and that a universal, general learning system exists. Unlike nativists such as Chomsky (for e.g., 1959, 1965) who claim that we have a kind of language faculty (related to a Cartesian view) which develops naturally, cognitivists, such as Piaget (for e.g., 1970, 1075), do not position a special input, domain-specific system for language.

Based on Piaget’s claim that knowledge is organized schematically (Piaget, 1970), cognitivists have predicted a structured view of learning that entails processing information, classifying new knowledge and categorizing experiences. These mental processes are triggered through reasoning and problem-solving, involving representations, prior conceptions and mental pictures. In some respects, it
has even been argued (Driscoll, 2000) that mental learning mechanisms mirror the working process of a computer - input, encoding, storage, retrieval, output.

According to Piaget, the origins of human thought are neither triggered by mere sensation, nor by an innate process, but by the environment. It is then processed by our biological mental equipment, which is innate, general and universal, and progressively constructs itself as the child has repeated contacts with the world around him/her. In this respect, Piaget differs from Chomsky and acknowledges the role of the environment, that is, socio-cognitivism. The individual thus develops elementary units of intellectual activity called schemas which are abstract entities referring to the organization of an action. As the individual generates more schemas, these become more mobile and general, and as a result, a unique set of experiences and knowledge or schemata develops. Schemas are either reinforced through a process which Piaget calls ‘assimilation’ or re-organized through what he calls an ‘adaptation’ process. A successful adaptation process then leads to a new organization of the schemata, called ‘equilibration’ (Piaget, 1975).

In addition to relying on a schematic organisation (Anderson, 1980), cognitivism also holds that learning follows a staged process of development. Further, these developmental stages follow a predictable pattern (Piaget, 1975). The ‘absorbing mind’ period of a child’s early years is followed by a stage of construction of social personality, then a humanist exploration which precedes a specialized endeavour. This staged process of human development arguably mirrors that of learning.

1.3.1 Cognitivism and SLA

Interestingly, within SLA the above developmental proposition is reflected by the natural order hypothesis of Krashen (1983) which claims a pre-determined order for the acquisition of language items. However, Krashen used his hypothesis to back up his distinction between acquisition and learning and to make his point that acquisition through exposure was natural and efficient and that language itself was, to a certain extent, resistant to pedagogic interference.

Other SLA researchers have investigated the developmental stages of language acquisition (first and second), in an attempt to understand why second language acquisition so often fails when first language acquisition always occurs.
One argument put forward, when research was conducted into the ‘teachability’ of languages (Pienemann, 1984), was the existence of fixed stages in interlanguage development, and thus the notion of developmental readiness (Spada & Lightbown, 1999). Researchers found that the process of acquisition of grammatical rules fell into six stages (Meisel, Clahsen, & Pienemann, 1981). These stages constituted an implicational sequence, which means that mastery of the rules at a particular stage entailed mastery of the rules characterizing earlier stages. The theory further predicts that learners can only acquire new features of the target language if they are ready to acquire it. However these findings remain controversial. Ellis (1995) notes that they have only limited applicability since they do not explain how this is so, and besides they only apply to implicit knowledge:

“There is no evidence that explicit knowledge of grammatical rules is acquired in some fixed order or sequence. Indeed it would seem that this is unlikely.” (p. 635)

Although contentious to some, if indeed there is such thing as a predetermined order or sequence in interlanguage development, cognitivists submit, unlike Krashen (1983, 1985), that this order needs be triggered by negotiation of meaning and supported by feedback. Cognitivism contends that exposure to input with feedback works to reconstruct learners’ language schemata (Long & Robinson, 1998). Instead of Krashen’s one-way model, cognitivists have shown that learners reconstruct language using a dynamic process which only happens if learners want to understand and make meaning, mere exposure not necessarily providing this. Long (cited in Gass, 2002) asserts that negotiation for meaning, and especially negotiation work that triggers interactional adjustment by the native speaker or more competent interlocutor, facilitates acquisition because it connects input, internal learner capacities, selective attention, and output in productive ways. Expressed another way, interactional adjustments make input comprehensible, and comprehensible input promotes acquisition (Lightbown & Spada, 1999). Long (1983) believes that when meaning is negotiated, input comprehensibility is usually increased and learners tend to focus on salient linguistic features (Ariza & Hancock, 2003). Negotiation will lead to the provision of either direct or indirect forms of feedback, including correction, comprehension checks, clarification requests, topic shifts,
repetitions and recasts. This feedback draws the learner's attention to mismatches between the input and the learner's output (Caroll, 2001).

Additionally and still pertaining to learners' mental processes, individual differences have emerged as a research question both in the general learning area and in SLA research. Learner's cognitive styles and computing abilities have been proposed as an explanation for the differences observed. Gardner (1983, 1993) in his theory of Multiple Intelligences (MI) challenges the idea of global intelligence and further suggests that learners develop an array of intelligences. He contends that multiple intelligences manifest on many different levels, bodily-kinaesthetic, intrapersonal, interpersonal, linguistic, logical-mathematical, musical, spatial and naturalist. Thus, an individual possesses a unique cognitive profile, though there are certain stages all learners go through. Those who believe specific abilities are only subsets of global intelligence nonetheless criticize Gardner's view of MI. Despite this, the recognition of individual differences has led to researchers such as Skehan (1989) showing how individual differences are manifest in specific language learning styles, strategies, motivation, aptitude and attitude. He further argues that these cognitive and affective variables interact with one another, adding to the complex and dynamic process of SLA.

1.3.2 Pedagogical implication of cognitivism

It follows that language instruction should endeavour to cater for learners' specific needs. To address this, different analytic syllabus types (discussed in a later section) have been developed, all having in their inception a focus on needs analysis. Thus this pedagogy acknowledges that the need to provide for individual differences must be incorporated. However, achieving this objective is difficult since it is virtually impossible to determine every learner's particular profile with sufficient accuracy. Therefore it is crucially important to ensure that language teaching materials, as well as the scope of student activities and experiences, are both broad and extensive, so that there are enough choices and options for them to build on their own specific strengths. It has been suggested that CALL, with its inherent diversity of resources and processes, is able to bring this to the learning process (Levy & Stockwell, 2006).
1.4 Constructivism

In the main, the theories developed thus far, each with their own contrasted paradigms, have attempted to explore the learning processes by explaining the act of internalizing knowledge. On the other hand, constructivism represents the view that real-life learning is an intricate and complex problem-oriented phenomenon in which learners constantly construct knowledge by actively attempting to make sense of the environment (Driscoll, 2000), often doing this while selecting and pursuing their own learning agendas. This learning style is based on the premise that, by reflecting on their experiences, and thereafter constructing their own understanding of their world, learners generate their own ‘rules’ and ‘mental models’, which they use to make sense of their experiences.

Borrowing heavily from cognitivists, who claim that schemata are constructed from all previous experiences, constructivists further contend that this process enables learners to make predictions. To do this learners rely on mental models not only to encode, store and retrieve information, as claimed by cognitivists, but also to select and transform, thereby creating hypotheses and making decisions (Bruner, 1960). Learning is therefore considered to be a holistic process of adjusting the mental models to accommodate new experiences. Constructivist theory thus claims that provision for analysis and synthesis is a key factor that creates opportunities to develop a personal grasp of reality (Lebow & Wagner, 1994).

1.4.1 Constructivism and SLA

For the past three decades, it has been proposed that language acquisition is better achieved when it results from a communicative endeavour. Most researchers agree that through communication learners pay attention and work to make sense of the language to which they are exposed. This proposition is the foundation of the communicative approach which dramatically changed the way languages were taught in the late 70's and early 80's.

1 It must be acknowledged, however, that cognitivists close to Platon believe that knowledge is shared between the learner and the environment and so they have moved their focus to learner-environment interaction.
However, if indeed there is agreement on the necessity of language instruction being based on meaning, there seems to be different views on how meaning should indeed be placed in the language learning process. According to some researchers (Puren, 2008), this precept originally promoted the use of discrete and often disconnected communicative activities, which they contend have very limited interest in terms of potential for both action and reflexion, and hold little motivational power. SLA constructivists contend that communication is best achieved when inscribed in a tangible social action, in a given cultural setting and constrained by identified genre norms. Thus, within a constructivist paradigm, SLA is situated by a content of some consequence, in a task or a project (Healey & Warschauer, 1998) which maintains a close relationship with a real-life situation. It further entails cognitive processes, such as modelling, scaffolding and reflexion (Conway, 1997), and, often, collaborative learning working towards a common goal. In addition, of particular relevance to foreign language learning is the interconnection of language and culture (Briguglio, 2000; Hinkel, 1999; Horwitz, 1999; Kennett, 2002; G. L. Robinson, 1991). If tasks are to be developed, then they must also incorporate the development of cultural understanding or awareness at the very least (Develotte, Mangenot, & Zourou, 2005; Mangenot & Tanaka, 2007; Mangenot & Zourou, 2007).

1.4.2 Pedagogical implications of constructivism

Action-based pedagogy has emerged based on the view that language learning (LL) should be on acting, and, what's more, on acting together in socially and culturally appropriate ways and not simply communicating. This view is particularly attractive to those who question the meaning of LL in a globalized world. Indeed, while its primary objectives were once comprehension and mutual understanding, language policy makers, particularly in a multilingual European context, now contend that LL must aim at making people of diverse linguistic and cultural backgrounds better equipped to work together, and increasingly, live together. Examples of constructivism principles applied to instructional design for a language learning curriculum include the use of the hypertext and hypermedia, wherein the learner gains access to a wider area of learning by controlling the elements they access. These principles are also implemented in computer-mediated communication (Mangenot, 2003, 2007; Mangenot & Develotte, 2004).
1.4.3 Conclusion

The present study endorses constructivist views, contending that meaning is embedded in real-life activities, often collaborative by nature. Therefore, life-like tasks are most likely to offer opportunities for meaningful goals and objectives and realistic ways and means (Mangenot & Penilla, 2009). Yet, the cultural and discursive aspects of SLA constructivism are sometimes overlooked by research studies, though within an action-based perspective (see details on page 39) they are arguably quintessential, especially when language and literacy constantly take on new forms, a phenomenon accelerated by the massive introduction of technologies in everyday lives. Thus if indeed acting collaboratively and in socially and culturally appropriate ways in the target language is the ultimate learning goal, then ‘second culture acquisition’ (Lantolf, 1999), inclusive of all literacies, is by no means a minor phenomenon. Therefore, research still needs to document the benefits of such a co-actional approach which, drawing heavily on constructivist principles, also brings in an additional, sometimes strenuous, cognitive load on learners.

1.5 Beyond constructivism

1.5.1 Interactionism

Social interaction is deemed by many prominent researchers as playing an important role in the learning process. Vygotsky’s (1962) theories claim that learners construct new knowledge through socially mediated interaction within their specific zone of proximal development (ZPD). Similarly Bandura’s (1986, 1997) social-cognitive perspective establishes the social foundations of thoughts and actions. His work is particularly relevant in explaining learner motivation, to be addressed later in this chapter. Whether it is developmentally or socially grounded, there appears to be a strong case for interactionism as a learning theory which borrows from both cognitive and constructivist theoretical positions.

1.5.1.1 Interactionism and SLA

In general learning theories, interaction is about a combination of theoretical positions, a bringing together of the cognitive and social domains; however, in SLA the term interaction primarily describes the communicative basis of the theory (Pica, 1998), though interactional theory may be either socially-grounded or cognitively-
oriented. For two decades now, interaction has been seen by many educators as setting ideal conditions for language learning because it involves opportunities for specific conditions shown to enhance SLA. Specifically, through interaction, learners have the opportunity to receive comprehensible input, to produce comprehensible output and to gain feedback which is facilitated through these exchanges. Pushed, or comprehensible output, is the learners' attempts at production which may be directed at a communication partner, a native or a non-native recipient, in the course of an interaction. It represents a learner's attempt at meaningful communication in the target language. Swain (1985, 1995, 2005) extends this interpretation to theorize on how output also pushes the learner to reflect on language form in order for modifications in interlanguage to occur.

Another contention is that through interaction, which involves the sharing of meaningful exchanges, there can also be a focus on form (FoF). It has been suggested that a FoF eventuates by drawing the learner's attention to a particular part of speech or language feature in the course of the learner's language activity. Long (Long, 2007) has also shown that such attention to form is necessary for interlanguage development, has greater utility and is more efficient than systematic but decontextualized language practice. These opportunities, in turn, promote learners' language development as their attention is drawn to those points of their interlanguage system which are malleable and ready to change (Lightbown & Spada, 1990; Long & Robinson, 1998; Spada & Lightbown, 2008; Swain, 1998). Those that advocate for a FoF approach make the point that it is beneficial for learners to pay attention to language form in various contexts.

It is thought that form-focused instruction (as opposed to forms-focused\(^2\)) leads learners to consciously notice linguistic features in the input and thus promotes the acquisition of more advanced, sophisticated knowledge. This view is also endorsed by Schmidt's Noticing Hypothesis (1990, 1993) which claims that conscious awareness of grammar during the action-communication process helps input become intake, thereby allowing the learner to internalize grammar properties and transform them into procedural skills and operational knowledge.

\(^2\) This distinction by Long and Robinson (1998) is further detailed on page 35.
Related to FoF approaches is the notion of feedback. This involves information to the learner about what is or is not correct and/or about their interactions. Through this process learners’ attention is drawn first to meaning and then to form. It has been argued that such interaction is important in the language acquisition process. For example, it is argued that negotiation for meaning (NFM as coined by Long), one form of feedback, facilitates second language learning development (Mackey & Oliver, 2002; Mackey et al., 2003) because it provides such opportunities as described above. However, many other forms of feedback do likewise (Raby, 2002). As a consequence considerable debate in recent times has been concerned with the role of feedback and the form it should take: implicit, being in the form of simple or complex recasts or NFM; explicit, such as overt error correction; focus on form, such as language use in context; or focus on forms, meaning systematic language practice. As such, error treatment, whereby the learner is pushed to produce a modified output, still remains a controversial issue.

1.5.1.2 Conclusion

The present study aligns itself with the view that learning results from meaning-focused interaction and that such interaction should be targeted so as to challenge learners and force them to go beyond their ‘comfort’ zone and approach what is defined above as the zone of proximal development. However it deviates somewhat from the above interactionist model because of the distinct nature of foreign as opposed to second language learning. When we deal with ‘holistic’ and ‘authentic’ tasks, as real-life tasks often do, then negotiating in the target language between learners who possess the same L1 is both challenging and unnatural. If task completion and outcome is primary, as Skehan (1998) argues, then we should not complain that learners resort to the best communication medium they have at their disposal: their own common language. Therefore, although the study recognizes that feedback, and particularly NFM, is indeed a necessary component of a successful SLA process, it contends that meaning may not always be negotiated, or at least not necessarily in the target language; and that a focus on meaning may also take other forms. For example, defining individual roles and responsibilities or negotiating work organization and planning is crucially important and can easily, perhaps more efficiently, be accomplished in the learners’ L1. Focus on meaning, in a broader sense, may also include working towards a social outcome within the target language.
or culture genres and norms, even if achieving this outcome entails that learners interact with one another in their first language.

Of particular relevance to the current study is how interaction is directed. While earlier interaction pedagogy was often introduced through information gap activities, it has become increasingly apparent that there is a need for more challenging and cognitively demanding tasks.

1.5.2 Cognitive flexibility

Based on constructivist theory, Spiro and Jehng (1990) further suggest that a successful learner is one who can re-organize and apply knowledge in response to varying situational demands. To attain this cognitive flexibility, learners must understand problems in their full complexity and cover the problem space from different perspectives. The Cognitive Flexibility Theory of Spiro, Feltovich, Jacobson, & Coulson (1988) concerns the transfer of knowledge and skills after the initial learning situation. Initially, students learn the basic concepts such as theories or rules in a linear context, for example, the way they are often taught in product-oriented approaches. However, when what Spiro et al. call ‘advanced knowledge’ acquisition occurs, such as completing a complex higher-order task, a non-linear approach is necessary to navigate the domain in which the learning occurs. Thus the theory recommends that learners be facilitated in developing unique and multiple representations of information and, as a consequence, resources should be interconnected rather than linear. Therefore Spiro’s model takes account of how learning may take place in complex situations, arguing that humans can restructure their knowledge as an adaptive response to a changing input and situational demands. Therefore, he rejects the common (weaker) view of constructivism, claiming that it relies too heavily on “the retrieval of organized packets of knowledge, or schemas, from memory”, suggesting that:

1. understandings are constructed by using prior knowledge to go beyond the information given (see the findings of Piaget et al);
2. the prior knowledge that is accessed is itself constructed, rather than retrieved intact from memory; and
higher-level learning in ill-structured domains, such as language acquisition, is achieved through the multiplicity of authentic contexts. He thus advocates for case-based instruction.

Spiro’s information processing paradigm proposes a number of specific and verifiable benefits to be realized through a constructivist approach, especially within ill-structured domains including language acquisition. One is that representations constructed from grappling with raw data, as opposed to representations resulting from someone else’s constructions, are not just generally ‘better’ in some vague way but specifically are more successfully transferred to other novel contexts, so creating a better preparation for further independent learning.

1.5.2.1 Cognitive flexibility and SLA

Spiro’s work resonates heavily in the way language teaching has evolved towards a pedagogy in which tasks, and macro-tasks such as projects, can be a driving and organising force in the classroom (Ellis, 2003, 2009; Nunan, 2004; Skehan, 2003a, 2003b). With the centrality of task in analytic syllabuses (see later section), language teaching has become inquiry-oriented and problem-based. The multiplicity of readily available media associated with the diversity of views expressed make today’s language pedagogy essentially multi-modal. In such contexts, mere retrieval of information is either impossible or counter-productive. Thus special skills need to be developed and encouraged: searching for information, transforming knowledge data, connecting language items, and reorganising discourse. Hence, just as it is not sufficient for teachers to ‘show’ and tell, it is not enough for learners to 'know' and remember. ‘Basic’ knowledge must be supplemented by more ‘advanced’ skills and know-how.

This relates to the current study since the use of tasks in language classes has brought a hierarchy of higher order thinking processes to bear which result in ‘advanced knowledge’ in that they encourage the capacity to recreate, transfer and expand initial knowledge. This study contends that ‘actional’ language tasks, viewed as finalized joint actions in a social context requiring the use of the target language (Puren, 2006, 2008, 2009), are more likely to trigger higher order processes, though they may also be less predictable and manageable and somewhat more chaotic, as we shall see in the section below.
1.5.3 Connectivism

In contrast to those theories of learning and language acquisition based on systematic attribution to the mind and/or the environment is that theory described by Siemens (2005) as "Connectivism: A learning theory for the digital age". This, he suggests, goes beyond constructivism, whether socially and/or cognitively enabled, to a chaotic, multi-dimensional approach:

"The act of learning itself is still often perceived to be in the head of the individual. Yet, most learning needs today are becoming too complex to be addressed in ‘our heads’. Therefore we need to rely on a network of people (and increasingly, technology) to store, access, and retrieve knowledge and motivate its use. The network itself becomes the learning. This is critical today; the rapid development of knowledge means that we need to find new ways of learning and staying current as we cannot increase our capacity for learning ad infinitum. Connectivism conceives learning as socially networked and enhanced by technology (it’s a symbiosis of people and technology that forms our learning networks). We need to acknowledge our learning context not only as an enabler of learning, but as a participant of the learning itself."

Such a view correlates with the diagnosis of French philosopher Gauchet (2008). He notes that the very essence of learning has unequivocally changed: its philosophy, its goals and its means. From his point of view, the reality of education is now fundamentally modified by learners’ technological usages. It could be said that learning is no longer a privileged activity, set aside from the reality of life. There is no longer sanctity in the learning situation, and in many ways, in a world that promotes lifelong learning, all have become learners. In a constantly evolving environment, learning is inscribed in everyday lives. This is even more so since the emergence of Web 2.0 (social Web) and, soon, Web 3.0 (universal Web).

According to Siemens (2005), connectivism is driven by the understanding that decisions are based on rapidly altering foundations whereby knowledge is short-lived. He argues that learners derive their competence by forming connections between new information continually being acquired. Therefore, not only is the ability to draw distinctions between important and unimportant information vital, but the critical ability is needed to recognize when new information alters the landscape based on previous decisions.
1.5.3.1 Connectivism and SLA

Siemens' (2005) views resonate with chaos/complexity theory (CCT), one Larsen-Freeman (Larsen-Freeman, 1997, 2007) developed to account for the dynamics of the language class. Larsen-Freeman’s CCT investigates the behaviour of complex systems and describes these as:

- dynamic, nonlinear;
- chaotic, unpredictable, sensitive to initial conditions;
- open, self-organizing, feedback sensitive, adaptive;
- fractal.

Together with Siemens’s views, hers can arguably be translated into SLA pedagogy in the manner that computer-based approaches have been incorporated into the classroom. These approaches not only allow learners to communicate at a distance, but in doing so enhance and update their knowledge, increasingly called mobile or ubiquitous learning. This is also achieved through the ever-increasing use of more sophisticated software (spellcheckers, corpus linguistics, automatic translators, distant mediators and the like). Because of these changes in technology the ‘good language learner’ profile (Naiman, 1996; Naiman, Frohlich, Stern, & Todesco, 1976) has been modified and the role of the teacher dramatically changed. Learners are now encouraged to become multi-task performers. They must be computer literate and, crucially, they must also be able to simultaneously navigate many domains (Raby, 2005, 2008). As for language teachers, they can no more pride or reassure themselves in the comforting feeling of their unique knowledge. Thus the traditional transmissive teaching model is becoming outlived as technology and extended networking are bringing about new ways of teaching and learning.

1.6 Conclusion

The general learning theories described herein provide several acquisition models that are interacting, complementing and sometimes competing with one another. For example, behaviourist theory largely implies different teaching/learning processes and outcomes than does constructivist theory. Further, different theoretical positions impact on pedagogy, especially for SLA where each theory maps out desirable pathways for learning. In recent times, the predominance of socio-
constructivist and cognitivist over behaviourist theory has signalled a move away from synthetic/product to analytic/process syllabuses, these dichotomous terms (detailed on page 34) being coined by Wilkins (1976) and popularized by Long & Crookes (1992).

The present study also endorses this predominance, considering language learning as being primarily a social and mental act. Based on this perspective, current theoretical positions about SLA and the role of the learner within this process are presented in the next section.

2. SLA process

2.1 Principles

Emerging from the SLA theoretical positions as described above are four basic assumptions which, though still contentious, do achieve a degree of consensus:

1. Exposure to input: little SLA occurs without extended exposure to a rich and diversified input (Krashen, 1985).

2. Meaning-oriented processing: exposure to input is only effective if the input is processed, that is, if learners have tried to understand its meaning and worked to make themselves understood (Long, 1996).

3. Form-oriented processing: the learner’s attention is directed to the form of the input as this stimulates a process of hypothesis formation (Long & Robinson, 1998).

4. Output: language learners notice the gap between their production and the input. This contributes to form-orientation and gives the teacher or the learner’s interlocutor the opportunity to provide corrective feedback (Swain, 1983, 1985, 1995, 2005).

Further, in order to engender the optimal conditions for these four principles, it is necessary to provide strategic activities. Tasks (see later section) are seen by many as providing such opportunities (Nunan, 1989, 2004).

These principles guide the current research which investigates how a task that presumably possesses the above characteristics may be affected and possibly further enhanced by either or both technological and collaborative attributes. The following
section outlines how individual differences contribute to SLA processes, including the use of tasks in language learning pedagogy.

2.2 Learner factors

In addition to the above processes of acquisition, another important factor impacts on the level of success, namely the characteristics of the individual learners. SLA studies have shown that, if instruction can have a beneficial effect on aspects of learning (Doughty, 1991; Long, 1983), the effectiveness and permanency of this effect is influenced by affective, social, and psychological factors of learners (Ehrman, Leaver, & Oxford, 2003; P. Robinson, 2002).

Recognition of learner factors has been reflected in the growth of attention given to the individual as the central agent in the second language learning process, and in the recognition that such an approach can promote more effective and efficient learning. Learners may apply various strategies from their repertoire of learning skills to compensate for communicative difficulties and/or to enhance their learning. In addition, as they move along their interlanguage continuum there will be gaps between their non-target like use and the target language. A number of factors impacts on their development, including factors from within the affective domain such as, willingness to communicate, attitude, needs, expectations and so on, as well as such personal traits as beliefs, knowledge, learning style, aptitude to name a few which comprise individual differences (Skehan, 1989). Because of their importance to the current study, these factors are considered in turn below.

2.2.1 Affective domain

Affective factors by their very essence are difficult to identify. Even more difficult is establishing the causative influence of those factors on learner acquisition. How a given learner responds to a particular learning experience depends to a certain extent on his/her willingness to communicate, attitude to learning, needs and expectations, all of which, arguably, contribute to the learner’s motivational state. Although motivation is still a somewhat nebulous concept, it has been claimed that it “is a very important, if not the most important factor in language learning” (Van Lier, 1996), without which even ‘gifted’ individuals cannot accomplish long-term goals. Thus the concept of language learning motivation has become the focus of

2.2.2 Personal traits

Cognition differs from one individual to another, leading to each individual having a unique learning profile. Correlated with this profile are the various strategies learners develop to enable them to memorize, understand, learn and perform more efficiently. Strategies could be described as the tools learners develop based on their own specific skills, know-how, beliefs and learning style.

2.2.3 Conclusion

Learner factors, particularly those that impede motivation, are a growing issue in today’s classrooms, and are often regarded by teachers as having a significant impact on learner performances. Such task characteristics as novelty, challenge, visibility are thought to modify learners’ motivation and thus performance. Such contention is examined in the findings section of the present study.

2.3 SLA Model

Koenraad & Westhoff (2003) have proposed a penta-pie to articulate the various components that are deemed to contribute to SLA. However, their proposition fails to account for learners’ affective and strategic factors which many have suggested play a significant role in the learning process (MacIntyre & Charos, 1996; O’Malley & Chamot, 1990; Skehan, 1989, 1998) and can explain differences
in the outcomes of individuals. Therefore, based on a modified version of Westoff's diagram, the following is suggested for SLA:

Figure 1. SLA process

Based on this model, strategic activities must be provided for learners in both receptive and productive modes (Koenraad & Westhoff, 2003) so that they can be exposed to input and have the opportunity to process content and form, before the target language is produced. Further, these strategic activities need to be constructed in such a way as to take account of learners' affective and personal traits, particularly their motivation and language learning strategies.

Strategic activities fall into the teacher's pedagogic domain and are those which will more likely help turn declarative (known) into procedural (know-how) knowledge, which research has posited as the general challenge of learning. Declarative or explicit knowledge (Ellis, 2006) is the information the learner claims to have at his/her disposal. In an era of rapidly developing access to information, declarative knowledge, which was once delivered by the teacher alone, is bound to rely on other varied sources. However, easing the translation of such knowledge into a procedural, pragmatic, applicable competence is, and will likely remain, the role of
the teacher, although many concurrent and possibly complementary approaches are currently being implemented in classrooms around the world. As a consequence, more traditional approaches underpinned by the view that language learning is a cumulative and linear computation – or synthetic approaches, as coined by the literature, cohabit with new pedagogies which engage learners in different ways, such as analytic syllabus approaches.

2.4 Synthetic vs. analytic syllabus approaches

Synthetic syllabuses such as grammar translation focus on accuracy in language learning being product-oriented: language is what is to be acquired primarily through exercising, drilling, rote learning and so forth. Wilkins (cited in Long & Crookes, 1992) first coined the terms:

“The learner's task is to re-synthesize the language that has been broken down into a large number of small pieces with the aim of making his [sic] learning task easier.” (p. 2)

According to Wilkins (1976), analytic syllabuses, on the contrary, place their main emphasis on fluency and language use:

“Analytic approaches ... are organized in terms of the purposes for which people are learning language and the kinds of language performance that are necessary to meet those purposes.” (p. 13)

Hence the analytic syllabuses of Wilkins (1976) assume learners are able to induce rules from the input:

“Since we are inviting the learner, directly or indirectly, to recognize the linguistic components of the language behavior he [sic] is acquiring, we are in effect basing our approach on the learner’s analytic capabilities”. (p. 14)

The following table, based on Long & Robinson (1998) and Swain (1998) summarizes polarizations of the synthetic/analytic continuum:

3 For a revisiting of Wilkins' positions, see Johnson, (2006)
Table 1
Synthetic vs. Analytic Syllabuses

<table>
<thead>
<tr>
<th>Focus on forms (forms-focused instruction)</th>
<th>Focus on form (FoF instruction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forms refers to discrete, isolated, specific language forms</td>
<td>The word Form refers to language form in general</td>
</tr>
<tr>
<td>Primary attention to language form</td>
<td>Learners first engage in meaning, then explore some linguistic features</td>
</tr>
<tr>
<td>Little attention to meaning</td>
<td>Occasional shift of attention to form</td>
</tr>
<tr>
<td>Pre-selected in the syllabus</td>
<td>Triggered by perceived problems in comprehension or production</td>
</tr>
<tr>
<td>Forms are taught in isolation</td>
<td>Linguistic features are explored in contexts</td>
</tr>
</tbody>
</table>

Synthetic approach
Analytic approach

Analytic syllabus approaches can thus be considered to favour ‘doing’ over ‘memorizing’. Lying within the interactionist paradigm, these translate to the pedagogic practice related to Process (Breen, 1984) and Procedural (Prabhu, 1984) syllabuses, but also to Task-Based Language Teaching - TBLT.

Task-based language instruction for instance, adopts a holistic perspective in which the language may equally be seen as an end and a means. Thus language is used for a specific purpose: to convey ideas, feelings or intentions. As such, a task-based approach has the potential to promote both depth and breadth in student learning. For example, a task-based approach provides the opportunity for learners to obtain varied extra-linguistic clues, particularly those that vary across cultures. This is beneficial because cultural awareness must come together with language learning if learners are to acquire a comprehensive grasp of the target language.

Because tasks are at the core of the study, they are reviewed in depth in the next section.
3. Tasks

3.1 Definition of tasks

A task requires learners to engage in an activity to achieve a goal. Prabhu (Prabhu, 1987) defined a task as an activity which requires learners to arrive at an outcome from given information through some process of thought, and which allows teachers to control and regulate that process. Nunan (2004) has further identified the following essential task characteristics: goals, input, procedures, types, teacher and learners roles, and settings.

According to Mangenot and Soubrié (2010), tasks are the smallest identifiable units of a language curriculum. In their view, a pedagogic scenario, a term often used to describe a pedagogical construct in France, is then a task associated with a communication scenario, which defines the mode of interaction or lack thereof.

3.2 Tasks and SLA theories

Long (1996) suggested that tasks are ideally designed to bring attention to language form. Language tasks useful to SLA are those which are relevant to the learner, are communicative and elicit both comprehensible input and output on the part of the learner. In addition, many language tasks also include an element of NFM such as that which occurs in information gap activities. Learners may also work out what the task means for them by working through this collaboratively with a peer.

Today, tasks are seen as effectively addressing both cognitive-interactionist and socio-constructivist paradigms, researchers having focused their attention on tasks because they aggregate the many ingredients that are reputed to be facilitative of SLA. Tasks provide for comprehensible input, NFM and promote a focus on form that can be employed for the purpose of language learning within second language classrooms. Thus, on this basis, tasks have been advocated for use in language teaching.
3.3 Task processes

3.3.1 Task prescription and redefinition

Task prescription refers to the guidelines, resources, conditions and constraints that are associated, whether explicitly or not, with the completion of a task and the achievement of its goal(s). However, research about tasks has shown systematic discrepancies between the prescribed task and what learners actually do or with the way they engage in the task. The argument then proceeds that learners assess and redefine the prescribed task according to their own competence and mental schemes, prior knowledge, as well as conditions such as their needs, motivation and context. Therefore this stage of task redefinition is arguably influenced by the learner's hidden agenda: the needs, values and beliefs mentioned earlier.

3.3.2 Task performance

When a classroom task allows for NFM to occur, feedback may be provided either by the learners themselves, or by the teacher. Hence, once the task has been performed or while it is being performed, it may be necessary or judicious that learners' attention be "briefly shifted to linguistic code features, in context" (Long & Doughty, 2003b), subject once again to appropriate feedback. The diagram below illustrates these task processes (see Figure 2):
Figure 2. Task processes
Source: The researcher.

3.4 Project pedagogy

Another manifestation of an SLA task-based approach is project pedagogy which places a common social project at the centre of learning while language learning is expected to occur as students attempt, often in a collaborative way, to achieve an outcome. Arguably, project pedagogy is a macro-task or project-task (Mangenot & Soubrié, 2010) that has the potential to entail all of the four basic assumptions cited (on page 30). Since the development and adoption in 2001 of the Common European Framework of References for Languages (CEFRL), which promotes an ‘actional’ perspective at least at the European level, it has been widely promoted. Some countries, among them France, now recommend its implementation in official curricula.

Co-action through project pedagogy is thought to empower learners and is considered as a crucial motivational lever. It is also encouraged for ideological reasons: in a continent with so many different nationalities and languages, where people will be increasingly bound to work and live together, a real need for
opportunities for co-action exists. In this particular context, language learning is a social statement and learners are ultimately viewed as social 'actors'.

It is with this particular perspective in mind that the present study was undertaken. The decision was made to pair up students and ask them to work collaboratively on a given ICT project that reflected actual social practices.

3.4.1 The actional approach

The trend towards competence-based learning has received an impetus in Europe through the development of the 'can-do statements'; these are integral parts of the CEFRL (Council of Europe, 2001), a blueprint document defining language learning objectives and outcomes for all of the European countries. In doing so, it adopted an 'actional perspective' which is now largely promoted at the institutional level.

The CEFRL is not easily compatible with traditional grammar-oriented pedagogy. Those practitioners who want to shape their work according to principles underlying the CEFRL must look for alternatives to the usual grammar/lexical focussed textbook tasks. The introduction of this tool has had a considerable impact on language teaching policies, notably on its implementation in the different European countries. A recent issue of *Recherche et applications*, (Rosen, 2009) gives a comprehensive overview of this perspective. In this issue, Coste (2009) shows how the CEFR considers: 1) the language learner as a social actor; and 2) language learning and communication as his/her actions. He defines a task as a finalized action which, under certain conditions, from start to finish, has undergone completion with observable results. He emphasizes that tasks are often multimodal entailing a wide range of learner activities that are not always communicative activities. Hence, according to him, most of the learners' activities in a language classroom relate to actual tasks, whether these are language activities or not, or whether they are repetitive form-focused practice or socially-embedded and pragmatic by nature.

This is congruent with Nunan (1999, 2004) who distinguishes between pedagogic tasks and target tasks, but does differentiate tasks from activities and exercises, which he defines as follows:

"Real-world or target task: A communicative act we achieve through language in the world outside the classroom."
Pedagogical task: A piece of classroom work which involves learners in comprehending, manipulating, producing or interacting in the language while their attention is principally focused on meaning rather than forms. They have a non-linguistic outcome, and can be divided into rehearsal tasks or activation tasks.

Rehearsal task: A piece of classroom work in which learners rehearse, in class, a communicative act they will carry out outside of the class.

Activation task: A piece of classroom work involving communicative interaction, but not one in which learners will be rehearsing for some out-of-class communication. Rather they are designed to activate the acquisition process.

Enabling skills: Mastery of language systems - grammar, pronunciation, and vocabulary which enable learners to take part in communicative tasks.

Language exercise: A piece of classroom work focusing learners on, and involving learners in manipulating some aspect of the linguistic system.

Communication activity: A piece of classroom work involving a focus on a particular linguistic feature but also involving the genuine exchange of meaning.

Figure 3, derived from Nunan’s position, illustrates how these different elements may be articulated in a task-based syllabus:

4 These are defined as ‘micro-tasks’ by Demaizière and Narcy-Combes (2005) and Bertin and Narcy-Combes (2007) for whom micro-tasks, relying on cognitive hypotheses, primarily aim at developing specific language skills.
However, Coste (2009) also notes that SLA has paid relatively little attention to the complexity of the learner’s actions, in particular, the fact that language activities which come with, comment, or which depend on actions, are in fact structured by them. He contends that such ‘actional’ structuring outweighs the effect of inner language coherence. For instance, making a live commentary on a rugby match will likely have a higher structuring power on the language activity than that based on thematic progression or the discursive organisation of sport journalism.

The present study endorses the view that a task or project may offer interesting opportunities for LL even though it is not strictly speaking ‘communicative’. Learners may develop specific strategies, have higher levels of autonomy and be additionally motivated by doing so. Together these aspects may compensate for language difficulties. In particular, low-achieving language learners could also take advantage of projects based on ‘action’ rather than on language production alone.

Following the promotion of such an actional perspective, particularly within the CEFRL framework, tasks have increasingly been integrated as parts of more global projects. In this way, learners’ social skills are enhanced and so, it is believed, is their involvement and motivation.
3.4.2 Task and motivation

Guilloteaux's (2007) account of motivation in the field of educational psychology distinguishes constructs referring to “within-person factors that can affect an individual’s motivation in educational settings”, presenting relatively stable aspects, from those that “tend to be influenced by the socialization process and by educational experiences, and which are therefore habitual or preferential but at the same time also somewhat malleable” (p. 55). According to her classification, within-person factors affecting motivational dispositions include:

- Need for achievement;
- Need for competence;
- Conceptions of the self;
- Action vs. State orientation; and
- Future time perspective.

A number of motivational beliefs and attitudes, which are more context-dependent, seem to interact with the above. These are:

- *Expectancy value*: the attractiveness of succeeding in the task (Wigfield & Tonks, 2002);
- *Attribution*: the perceived causes of achievement performance (Weiner, 1985);
- *Self-efficacy vs. learned helplessness*: the personal evaluation of one’s capabilities to organize and execute actions to attain designated goals (Bandura, 1982, 1997; Bandura & Adams, 1977);
- *Self-worth (or self-esteem)*: an individual’s positive appraisal of their personal value in terms of how competent they appear to others in achievement situations (Covington, 1992);
- *Goal-orientation*: the subjective meaning that students assign to a particular learning situation (Järvelä & Niemivirta, 2001; Volet & Järvelä, 2001); and
- *Self-determination*: the well-known distinction between intrinsic and extrinsic motivations. Spontaneous engagement in a task, for the satisfaction
or enjoyment derived out of doing it, is said to rely on intrinsic motivational processes. Yet such distinction has been reviewed and, based on Deci and Ryan (Deci & Ryan, 1985, 2004, 2008; Ryan & Deci, 2002), proponents of Self-Determination Theory now view extrinsic motivation as a continuum between an individual's own agenda and an externally prescribed way of thinking or behaving.

Within tasks, the above theories and constructs have implications in terms of their impact on the quality of the learners' actions and attitudes. Tremblay and Gardner's (1995) socio-educational model of L2 motivation further differentiates between instrumental and integrative motivation. Instrumental motivation is utilitarian, the learner wanting to succeed in order to achieve a personal objective; integrative motivation is triggered by the need and/or desire to approach the linguistic community of the L2. Gardner (2001) further contends that an integrative model of motivation is affected by attitudes to the learning situation. Within this model, motivation is viewed as necessarily including three elements: persistent effort, goal achievement and learning enjoyment.

In the above respects, tasks may be viewed as setting ideal conditions because they hold the potential to address the learners' needs closely. This is thought to be particularly true of unsuccessful learners whose underachievement is often caused by insufficient motivation as much as low aptitude (Nikolov, 2001). Tasks provide opportunities to navigate other domains and hence are more likely to offer occasions for improving their self-image. However, the question thus arises as to what exactly makes a task more motivating? Research shows two crucial characteristics of tasks.

Firstly, it is claimed that successful tasks are challenging. Van Lier (2004) supports this idea by referring to the concept of prolepsis. He argues that ambitious tasks stimulate learners and, at times, push them to go beyond what they expect for themselves and even what teachers generally expect. Likewise, Bandura (1986, 1997) insists that challenging goals are essential to build up and maintain motivation. Therefore tasks that are motivating have the potential to empower learners (Raby, 2008).
Secondly, socially-embedded tasks allegedly make the micro-tasks associated with learning, like looking up a word in the dictionary or correcting grammatical errors, seem less tedious. When the overall goal is perceived by the learners to be socially pertinent, the constraints of time, length and quantity can be seen as conditions and requirements of the task and not simply demands of the teacher (Raby et al., 2008). Thus language learning takes on an instrumental dimension: "I'm learning English to achieve a goal that is primarily practical and not linguistic"; there is a more direct connection between the students' learning and its possible effects. Further, knowledge in other related fields could also be acquired, for example, training in publishing or design, learning diverse computer applications, and following guidelines. All of these, in turn, may allow language students, especially those of lesser abilities who are disheartened by previously unsatisfactory results, to find new motivation.

This current research aims to investigate learners' productions when performing a task that is arguably regarded as motivating. A Web-based task is viewed as such because it gives learners opportunities to express personal views and opinions publicly. It also requires more than mere language ability: discourse mastery, genre management and technical knowledge. Together these contribute to the learners' empowerment and self-esteem. For these reasons, it was envisaged that this approach would enhance low-achievers' motivation and, in turn, their performance. However, it was also feared that such a pedagogic approach may demand too much on the part of these learners who were already experiencing difficulty in their learning. Thus, this research investigates the impact of such an approach on low-level achieving students.

3.4.3 Task and collaboration

Another crucial aspect of a task-based approach is collaboration (Oxford, 1997). Although a task may be performed individually, collaboration (or cooperation) remains a distinctive opportunity within a task-based approach. It should be noted that some authors use the terms collaboration and cooperation interchangeably but others differentiate between them. A task can be deemed cooperative when it can be subdivided and completed by two or more learners. In contrast, a task is called collaborative when it requires that two or more learners
work together on all parts of a task (Henri & Lundgren-Cayrol, 2001). Arguably, collaboration encourages social skills and thinking skills and mirrors real-life situations (Lebow, 1993; Yelon, 1996). Therefore, within an actional approach it is crucially important that learners develop interpersonal skills. Regardless of the terminology used to label such an approach, group or pair work represents a challenge for teachers and learners alike. Specifically, students are found to have varied abilities when it comes to collaboration and teachers often struggle to ensure their students’ individual contributions.

The task designed for the current study takes a collaborative approach and allows students to work in pairs. Although the pair is accountable for the end-product, some subtasks, that is, parts of tasks are specifically given to a member of the pair so that responsibility is both shared and personal. This investigation attempts to reveal the effect of such collaboration.

3.5 The question of adequacy of tasks

However popular task-based syllabuses may have become in some circles, there is still criticism on the part of those who think that while tasks promote fluency, there is insufficient focus on accuracy, and insufficient attention to the forms of the language (Swan, 2005). Indeed, combining relevant meaning through social practice and scholarly attention to language form, as promoted by Long and others, remains a challenging endeavour, particularly in the case of project-based instruction where meaning and doing are paramount. Hence, there is often little “natural” opportunity for form-focused tasks, making the attainment of these objectives sometimes appear as irreconcilable.

Some would claim it to be particularly difficult within tasks to provide opportunities for reinforcement through language practice. This is a repeated training which some researchers claim helps the acquisition of automatized language (DeKeyser, 2007). In fact such a view challenges the very idea of tasks and instead tends to re-establish practice and its corollary, repeated training, as an essential component of a successful learning process. Devising tasks that combine meaning and form is a challenge still to be met and reconciled in contemporary language learning pedagogy. The intention is that the task designed within the current project approach may go some way to addressing this.
At the same time it must be acknowledged that such project-driven tasks may not be unequivocally flawed. While they incorporate these elements recognized as essential to successful SLA, it could possibly be argued they cannot integrate the whole spectrum of language activities of the language class. In acknowledgement of this, the current research focuses particularly on the impact of CALL tasks on learner performances in project-based pedagogy.

4. Computer-Assisted Language Learning

Today, tasks are more easily connected with real life activity through the use of the Internet and computer technology. Indeed, in recent times, new technology has impacted considerably on our everyday lives, and this has, to varying degrees, been transferred into school classrooms. When students enter educational spaces today, they do so with a different mindset from even a few years ago. They are digitally literate, constantly connected, socially-driven, engaged, and visually-driven (Oblinger & Oblinger, 2005).

The provision of adequate computer equipment and Internet access for schools, which represents a massive investment, took little more than a decade to occur, demonstrating the rapidity with which educational institutions adopted this technology. However, compared with audio materials, such as tapes or CDs, which are widely and commonly used within schools and in language classes in particular, multimedia technology is used less frequently.

4.1 Definition of CALL

Though it has met with mixed success, the integration of technology has occurred in the field of language learning including in both second and foreign language learning. The many forms of computer-assisted language learning have encompassed a variety of approaches and methods. These are reflected in the numerous labels used to describe such activities (see Table 2).
Table 2

Acronyms used for ICT-based education

<table>
<thead>
<tr>
<th>General education acronyms</th>
<th>Language learning acronyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI (Computer-Assisted Instruction) / EAO (Enseignement Assisté par Ordinateur)</td>
<td>AL&SIC (Apprentissage des Langues et Systèmes d’Information et de Communication)</td>
</tr>
<tr>
<td>CAL (Computer-Assisted Learning)</td>
<td>CALI (Computer-Assisted Language Instruction)</td>
</tr>
<tr>
<td>CBI (Computer-Based Instruction)</td>
<td>CAALL (Computer-Assisted Autonomous Language Learning)</td>
</tr>
<tr>
<td>CBE (Computer-Based Education)</td>
<td>CALL (Computer-Assisted Language Learning) / ALAO (Apprentissage des Langues Assisté par Ordinateur)</td>
</tr>
<tr>
<td>CMC (Computer-Mediated Communication) / CMO (Communication Médiée par Ordinateur)</td>
<td>CELL (Computer-Enhanced Language Learning)</td>
</tr>
<tr>
<td>CMI (Computer-Managed Instruction) / EGO (Enseignement Géré par Ordinateur)</td>
<td>CMCL (Computer-Mediated Communication for Language learning)</td>
</tr>
<tr>
<td>CML (Computer-Managed Learning)</td>
<td>CmLL (Computer-mediated Language Learning)</td>
</tr>
<tr>
<td>CSL (Computer-Supported Learning)</td>
<td>ICALL (Intelligent Computer-Assisted Language Learning)</td>
</tr>
<tr>
<td>CSCL (Computer-Supported Collaborative Learning) / ACAO (Apprentissages Collectifs Assistés par Ordinateur)</td>
<td>MALL (Mobile-Assisted Language Learning)</td>
</tr>
<tr>
<td>WBT (Web-Based Training), e-Learning / e-Formation</td>
<td>NBLT (Network-Based Language Teaching)</td>
</tr>
<tr>
<td></td>
<td>TELL (Technology-Enhanced Language Learning)</td>
</tr>
<tr>
<td></td>
<td>WELL (Web-Enhanced Language Learning)</td>
</tr>
</tbody>
</table>

Source: The researcher.

5 English / French acronyms when in use (Chanier & Lamy, n.d.).
For the sake of clarity, and because it encompasses the whole range of possible computer uses in language learning (Levy, 1997), the acronym CALL is used in this thesis.

4.2 The perceived benefits of CALL

The persistent advancement of technology has added complexity to the manner in which knowledge is organized, created, and managed in every aspect of our lives. With continual access to technology, new vetting processes are required for knowledge, e-teaching and e-learning. Further, the use of computers has resulted in the ‘outer world’ being drawn into the classroom (Mangenot & Penilla, 2009), and the possibilities of access to the target culture have dramatically improved. By using such an approach, materials and learning tasks such as role-play, can seem more ‘authentic’ to language learners. With respect to the acquisition of a cultural understanding, the provision of adequate and appropriate input is facilitated and enhanced by the use of the World Wide Web (Andrews, 2000).

Computer tasks often involve a more extensive use of collaborative work than do more traditional teaching and learning approaches. In a CALL situation, collaboration occurs because more often than not, due to limited access to enough computers, learners work together at one computer. There are also other reasons for this collaboration in CALL settings. For instance, as more and more CALL designers implement a socio-constructivist approach to task design, they use collaboration as an integral part and as an enabler for learning.

Finally, the use of ICT allegedly can lead to enhanced learner motivation, arguably a key to successful language learning. Many teachers, for example, refer to an alleged motivational effect to explain and justify the use of technology in their classrooms, though this has yet to be proven and might be an incorrect perception (Raby, 2009b).

Whilst the potential for CALL development seems clear, particularly in relation to the variety of cultural inputs (Hinkel, 1999; Lantolf, 1999; G. L. Robinson, 1991), social skills and motivation, it is less clear whether the use of CALL does actually translate into cultural awareness and second/foreign language acquisition. It is also unclear as to whether CALL can help sustain learner motivation over time. There is an overall lack of evidence and evaluation of the contribution of
CALL to SLA, and in particular whether collaborative project-based CALL tasks promote the transfer of knowledge and skills and the acquisition, or indeed the construction, of some advanced knowledge, both linguistic and cultural. This is of particular interest because real-life (target) tasks are strongly advocated with ICT and collaboration being actively promoted in the European context. Therefore the current study provides an opportunity to document learners' performances, with particular attention being given to lower-achieving learners whose performances are compared with those of others.

4.3 Pedagogic practices

The variety of CALL practices and acronyms suggest that these relate to different pedagogical paradigms. In fact, as Beatty (2003) suggests, the term CALL covers a broad range of practices. However, few CALL practices are firmly rooted in an analytic, task-based approach (see Dodge's Webquest page for examples of some exceptions). Many more are based on a more synthetic view of language acquisition, such as the drill exercises and multiple choice questions which abound the Net.

Word processing, particularly those programs which allow for spelling and grammar checks during writing tasks, might represent one of the simplest CALL applications. Games on the other hand are often seen as enhancing the immediate motivation to perform a task. Game-like formats in language exercises, for example, the Hot Potatoes© authoring system (Arneil & Holmes, 1997-2005), may also be perceived as less threatening by the learners because they mirror well-known, routine classroom practices. In addition, games are also commonly used in both ICT and non-ICT environments. Reading tasks, including those related to the study of literature, are often part of the CALL range of activities with hypertext potentially allowing for an increased interconnection of ideas. Corpus linguistics and concordancing are sometimes used for inductive approaches and analysis of typical error patterns. Computer-Mediated Communication (CMC) is another of the more popular CALL task types and include e-mail, chatlines, bulletin boards, blogs and Multi-user dungeon Object-Oriented (MOOs). MOOs may represent promising materials for language learning once the initial cognitive load has been overcome (Beatty, 2003). It should be noted, however, that these latter tasks rely more on incidental learning than on formal language instruction. The emergence of so-called
'serious games', for which learning and playing are sophistically intertwined and carefully devised, may bring change in that respect, in the same way as the accelerated technological change brought by the development of Web 2.0, with social and technological environments combined, and with increased authoring access and the semantic Web, is likely to introduce new approaches to teaching and learning.

A popular practice among the teachers who have adopted CALL tasks is indeed the use of resources on the Web. For example, these resources may be used to augment a textbook or else be needed by the learners for collection of information—the 'knowledge hunts'. Sometimes the tasks are associated with information processing and require the learner to be engaged as a social actor. Such tasks are commonly called cybertasks, a classification proposed by Mangenot & Soubrié (2010) which they define as being Web-based in that the Internet is the original material or/and the medium of communication in use; or Webquests, although it must be noted that some Webquests do not require any transformation of knowledge or transfer of skills, and do not entail the achievement of a final product either, in which case they should rather be associated with knowledge hunts. Cybertasks or Webquests often include a role-play dimension or simulation activity. They can thus be defined as inquiry-oriented activities in which most or all of the information used by learners is drawn from the Web in the form of an open-ended, information-processing tasks managed through role-play scenarios. Learners are required to complete a number of subtasks, such as researching and selecting information, then managing and transforming this information into a coherent whole rather than the traditional writing of an essay after studying a text, or organizing the delivery of the end-product as an oral presentation, debate or publication. Therefore, tasks such as these are project-driven pedagogic endeavors requiring the higher-order skills related to advanced knowledge.

For those teachers who choose to use them, CALL tasks undoubtedly lead to changes in their practices. In turn this has led to changes in the process of language learning for their students. Because of the relevance of these aspects to the current study, a reflection on task design and ICT pedagogy is outlined next.
4.4 Learner cognition

Despite increasing attention being given to analytic syllabuses, TBLT in particular, in the SLA literature (see page 36), it is interesting to observe that a significant number of CALL programs and materials today still rely heavily on a synthetic view of language learning wherein lessons are sequenced, and marks and grades are given accordingly. This latter model is still used in many classrooms today, including French classrooms.

In contrast, CALL tasks in a Web-based project, such as a Webquest scenario, typically encompass several task domains incorporating mostly cultural, language, and technical knowledge. These also involve social and interpersonal aspects. Obviously, the learners' cognitive system is heavily taxed by such task demands. For example, in the case of a Webquest where learners are exposed to multiple representations of the same phenomenon such as various resources on journalism: pictures, articles, headlines, editorials, a number of higher order computations are required for learners to make sense of the input and, in turn, to contribute to this particular discursive genre by creating his/her own news page (as will be the case in this study, see next chapter).

This is where Spiro’s model of cognitive flexibility (see page 26) may prove particularly appropriate to describe learners’ mental processes. The current study takes this aspect into account since the task design provides opportunities for the acquisition of both basic and advanced knowledge. It will be particularly interesting to uncover whether these opportunities are met by the actual learning outcomes.

However, some may argue that tasks such as Webquests are simply too complex for learners, especially low-achievers, drawing too much on their cognitive abilities. In particular, it is feared that such low-achieving learners may fail to address part of the task requirements, especially those instructions that are not necessarily made explicit but are essential to the task. In other words, it is often assumed that low-achievers will only do the minimum required and not fully engage in performing the task, which the study aims to verify.

Indeed, because they resort to computers as mediating tools, CALL tasks typically differ from the traditional, well-known pen and paper situation. According to Rabardel (1995), a computer is both a technical and psychological tool, thus
impacting on the nature of any given human activity performed with it. One of Siemens’ (2005) arguments is that many of the processes previously handled by learning theories, especially in cognitive information processing, can now be off-loaded to, or supported by, technology so altering our cognitive processes.

Two theoretical approaches have relevance here. The first is Leplat’s (1997) model of activity theory which associates task, subject and specific conditions. Then Hoc’s (1996) study concerns dynamic situations in technological environments, as opposed to static situations paradigms often favoured in cognitive research on problem solving. These may provide useful insights into learners’ processes when they deal with the complexity of collaborative computer tasks. Cognitive ergonomics has emerged as a means of explaining the sometimes dysfunctional relationship between man and machine or man and instrument and that focusing on the operator’s field activity and cognitive processes (Hoc, 1996; Leplat, 1997). It may also be useful to better understand the learner/computer interface. Raby (2005, 2007) has applied the Hoc and Leplat models and theory to empirical research on language learning in order to identify the ‘appropriation’ process in a user-centered approach. This research shines a new light on ICT-based language tasks, namely, how task perception and completion, learners’ interaction and teachers’ feedback are affected by the use of computers and the Internet. The current research aims to explore these, particularly with respect to collaboration.

5. Conclusions and Hypotheses

From the review of the literature above, it appears that ICT and collaboration affect the language learning interaction and outcomes which occur when a task-based approach within the project pedagogy is employed. In particular, it would seem that:

a) ICT and collaboration should produce better results from learners than pen and paper work and individual work. This would be partly due to increased motivation but also because such conditions trigger higher order thinking and more effective processes; and

b) low-achieving learners should not experience greater difficulty because they would allegedly be more motivated and would be able to succeed in other task domains - graphic, technological, organisational or other.
6. Research Questions

CALL tasks are increasingly used by some teachers today and ignored by others; nonetheless these tasks have potential for engaging learners in co-action processes. In addition, empirically documented evidence of this phenomenon in the literature is still scarce, particularly with regard to Web-based projects. Therefore there is a need to explore further the mechanisms of CALL tasks, and thereby assessing their effectiveness. The present study undertakes to test the veracity of the theoretical positions presented above in relation to SLA by exploring the data in terms of task processes and the outcomes which will be the learners’ productions.

Based on earlier research (Bertin, 2001; Chapelle, 2003; Levy, 1997; Mangenot, 2000; Raby, 2005), this study seeks to verify if meaning-focused or actional tasks that pay little attention to form may still be profitable for learner performance. Cognitive psychology contends that tasks which are lifelike, content-oriented and functional will not only be motivating, but can be more effective in terms of learning outcomes. Thus the impact of both collaboration and technology on learner performances will be studied with particular attention being given to lower-achieving students to determine whether or not CALL tasks are appropriate for them.

Therefore, this research seeks to answer the following research questions:

1. How do CALL tasks affect learner performances in project-based pedagogy?
2. How does collaboration affect learner performances?
3. How do low-achieving learners perform with these more complex tasks?
CHAPTER 3
METHOD

1. Background

This research was undertaken as part of a project supported by the French National Center for Scientific Research which aimed to evaluate English language learning and teaching based on collaborative ICT pedagogic scenarios in French high schools. For this larger research project there were three foci: learners (motivation), teachers (pedagogy), and performances (process and product). Although all three are interconnected, the current research focuses on performance with particular relevance to learners. Therefore, the methodology described below is related only to the data collection and analysis methods required for the purpose of answering the research questions, as outlined in the previous chapter. However, the conclusions from other parts of the larger study will be referred to in the findings chapters of this thesis as they help to illuminate the current findings.

The data for the current study were collected by way of a pedagogic project set for learners of English as a foreign language. The focus of such project was the press in English-speaking countries. This consisted of a macro-task that led students to create a news Webpage or a newspaper front page, including the writing of an article or editorial (the subtask), and also entailed preliminary tasks that made students gather information about such press, all of which involved a large amount of language processing and production such as reading, writing and viewing. As indicated previously, the focus of the current research was twofold as there were two interrelated aspects: first the learning process generated by the language task and then the product of language performance as a result of undertaking the task by French high school students learning English as a foreign language in an ICT and collaborative setting; and by way of comparison, by students who undertook the project without ICT and/or collaboration.

Language task as process involved an examination of how the students undertook the prescribed tasks, including documentation of the strategies used to
cope with the demands of each task. Of particular interest to the current research is the manner in which low-achieving students did this.

As a first step, linguistic competence was assessed and class evaluation records were carefully examined to identify low-achievers. Further, the students were assessed for their awareness of the domain content and their attitudes were questioned, both pre- and post-project. Together these data were compared, first qualitatively through an analysis of the students’ on-task participation as recorded on video, and then quantitatively by means of analyzing how students performed on the preliminary tasks. These preliminary tasks were calibrated so that their analysis could reflect the degrees of cognitive difficulty as according to Spiro’s definition.

The second focus of this study, that is, language as *product*, involved an examination of what the students were able to produce (i.e., content, language form and specific grammatical forms) especially when engaging in the macro-task, the creating of a news Webpage and its subtask, the writing of a press article or editorial. In addition, the students wrote information for either the front page of their paper or for a Webpage. The language they produced was coded and analyzed, both linguistically as well as with regard to content appropriacy (e.g., reporting style, journalistic genre). Again of particular interest in the current research was the product of low-achieving students.

Finally, two *independent variables* were examined in this research. Firstly, the data were examined to see whether or not working on a computer with Internet resources affected the language processes and products resulting from these tasks; and also whether or not learners employed particular strategies to cope with this medium. Secondly, the nature of the students’ collaboration was examined to ascertain whether or not it influenced the quality of the work produced. The relationship between these two variables was also considered since they are often associated in real life school settings.

5 Based on preliminary observation tasks, it was assumed learners would be able to reproduce specific features associated with both journalistic discourse and Internet media. For example, short, attention-drawing headlines, captioned photos, presence of an index of related rubrics etc. Such cultural output would also appear in the very content of the feature stories chosen by the learners. For example, if the news homepage was intently looking austere or sober, then articles were expected to deal with different content or from a different perspective than other more casual and colourful interfaces.
2. Participants

The participants in this study were 77 students and their teachers from three intact classes selected from senior high schools (one state school and two private schools, one of which is vocational). The students were aged 16 to 18 years and their teachers of English as a Foreign Language were volunteers in this research who had extensive experience using computers with their students in the course of their teaching.

Although the teachers were recruited based on their willingness to participate, it was also the intention to avoid biases due to a particular teacher or setting. As such, the teachers were chosen from different schools, the first two were located in Grenoble, a middle-size town in South-East France, and the third in Valence, a small town, 80 km from Grenoble. The teachers were also selected according to the access that they had to IT resources. This is because of the variation that occurs between schools with respect to the availability and maintenance of this type of equipment. Therefore, schools were chosen to participate on the basis that they had relatively reliable technological conditions, that is, where there was at least one computer for each student dyad in the computer room, and a technician was available in case of technical problems. Lastly, the participating teachers were all well-trained and experienced to help ensure that sound pedagogy and good teaching practices were in place in the classrooms.

All participating teachers (n = 3) had taught for 10 to 20 years and had been involved in teacher training to varying degrees. Crucially they were also accustomed to using technology in the classroom so that they were used to dealing with its demands. In addition, they had all embraced a task-based approach in their teaching.

The students were in their second or third year of high school education and had opted for the study of social sciences and economy (for those in mainstream education) or services industry and technology (for those in vocational training). This means they were potentially interested in current affairs and news, and were accustomed to information technology and media.
3. **Research Design**

Because intact classes were used, the methodology adopted in this study is quasi-experimental and the participants were observed in a naturalistic classroom context.

Each class was divided into two groups, A and B, which the class teachers taught in turn. To avoid methodological biases, students were numbered in alphabetical order within their respective class, and those students assigned odd numbers were placed into groups A, whilst even numbered students were placed in groups B. Students in the A groups were all taught in ICT collaborative settings being free to choose the partner of their liking, whereas students in the B groups experienced different types of pedagogy. Thus the experimental groups were groups A and groups B constituted the control groups. This random allocation of students did not, however, ensure that low-achieving students were represented in each group. As it turned out, there was no low-achieving student amongst those in Teacher 3’s group B. The teachers were also anxious not to manipulate the composition of their classes. It was thought students would resent being placed in a particular group according to their performances on the placement test and level assessment. Therefore randomized allocation was deemed to be a more equitable and ‘student-friendly’ method.

To maintain ecological validity the teachers chose a methodology from their usual practice for teaching group B. Specifically, Teacher 1 used a conventional ‘pen and paper’ individual setting for her group B; Teacher 2 used a ‘pen and paper’ collaborative group approach with her group B (students chose their partners); and Teacher 3 used ICT individual work tasks with the Group B students.

Thus six groups undertook the various tasks (see Table 3) and so the two variables investigated in this study are collaborative versus individual work, and ICT versus pen and paper work.
<table>
<thead>
<tr>
<th>Group A</th>
<th>Teacher 1</th>
<th>Teacher 2</th>
<th>Teacher 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICT collaborative tasks</td>
<td>ICT collaborative tasks</td>
<td>ICT collaborative tasks</td>
</tr>
<tr>
<td></td>
<td>9 students (3 dyads, 1 tryad)</td>
<td>18 students (9 dyads)</td>
<td>12 students (6 dyads)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group B</th>
<th>Teacher 1</th>
<th>Teacher 2</th>
<th>Teacher 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pen & paper individual tasks</td>
<td>Pen & paper collaborative tasks</td>
<td>ICT individual tasks</td>
</tr>
<tr>
<td></td>
<td>10 students (6 dyads, 1 tryad)</td>
<td>15 students</td>
<td>13 students</td>
</tr>
</tbody>
</table>

4. Research Materials

4.1 Project outline

A move in recent times has been towards 'projects', but in fact the project undertaken by the students in this research follows a task-based approach and, as such, both terms are used in this thesis. However, the term 'project' refers more directly to the whole body of the work, and the product it involves, whereas the term 'macro-task' more specifically encompasses the subtasks associated with the project.

As noted, the aims of the current research were to investigate the process learners engage in when working on an ICT-collaborative task; and, to examine how, and to what extent, such a task may affect language performance. To achieve these ends, the actual tasks used, the design of which is outlined below, are integrated into a global project which consists of making a newspaper or a news Website.

All learners were initially offered an introductory task aimed at introducing them to the specifics of journalistic discourse. This was achieved with the help of a textbook that collated fragments of articles and headlines, thus guiding students through careful analysis (e.g., use of passive voice, infinitive verbal forms, nominalization etc.). This introductory task was deemed necessary to ground the project for all students in a similar way and to explain how they were going to proceed from then, notably within the different group settings.
In addition, in order for this project to be successfully undertaken, and depending on the task conditions, students who were to perform the tasks in ICT settings were given a pre-task training so that they could more easily master the software used for the development of Web content (Dreamweaver®).

The project itself, planned to spread over 6 to 8 class periods, consisted of two different phases:

Phase 1: Preliminary tasks

The aim of these tasks was to have the learners observe, understand, analyze and make comparisons between a number of newspapers or news Websites. In the process they had to fill out worksheets which were kept as records of the activity.

Phase 2: Macro-task

Drawing on the observations from Phase 1, learners had to develop a newspaper front page (in print) or homepage (online), including peripheral information and layout elements. In the process, they also had to write and include an article and/or an editorial which constituted the subtasks.

Table 4 outlines the procedure used by the teachers for the different steps of the project.
Table 4
Teaching procedure outline

<table>
<thead>
<tr>
<th>Group setting</th>
<th>ICT collaborative</th>
<th>ICT individual</th>
<th>Pen & paper collaborative</th>
<th>Pen & paper individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>What students did</td>
<td>Work on headlines, captions, and language features specific to journalism (textbook-based)</td>
<td>Use of Dreamweaver software for the creation of Websites and pages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-task training

Introductory task

<table>
<thead>
<tr>
<th>PHASE</th>
<th>Preliminary task 1</th>
<th></th>
<th></th>
<th>Preliminary task 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Browse the WEB and establish comparisons between various homepages</td>
<td>Use of Dreamweaver software for the creation of Websites and pages</td>
<td></td>
<td>Reading comprehension on PAPER WORKSHEET (topic: the British press)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>Macro-task</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Create a newspaper HOMEPAGE (on the Internet)</td>
<td>Use of Dreamweaver software for the creation of Websites and pages</td>
<td></td>
<td>Reading comprehension on PAPER WORKSHEET (topic: the British press)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>Subtask 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Include feature article AND editorial</td>
<td>Include feature article OR editorial</td>
<td>Include feature article AND editorial</td>
<td>Include feature article OR editorial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resources

<table>
<thead>
<tr>
<th></th>
<th>Reference material ONLINE</th>
<th>Reference material IN PRINT</th>
</tr>
</thead>
</table>

4.2 Task characteristics and description

In line with the different positions discussed in Chapter 2, this pedagogic project was designed (in collaboration with the participating teachers) so as to offer opportunities for both comprehensible input and output. It was also thought to be challenging for the learners and socially relevant because it dealt with a genre they were presumably familiar with, at least in their L1.

It also provided opportunities for 'focus on form' in the introductory and preliminary tasks, and during the macro-task. With respect to the teachers, they provided feedback when they deemed it necessary or useful and in the form they naturally chose to adopt (recasts, explicit correction, elicitation, clarification.
requests, repetition, and metalinguistic feedback in French [L1] or English [L2]). It was also provided by the students themselves incidentally and by their interaction as they worked with their peers: Thus interaction, and the hypothesized benefits it provides, was promoted through the collaboration that occurred as the students embarked on the task.

The task allowed the students to approach journalism and media information from multiple perspectives and offered incremental difficulty, from basic scanning and skimming to more advanced language computation. It thus provided ample material for analysis both of the nature of the learning processes and the quality of the language produced.

4.2.1 Introductory task: getting acquainted with journalistic genre

This introductory task was performed by all the students in a whole class setting. With the help of their textbooks they completed a series of exercises aimed at equipping them with basic knowledge of journalistic genre. These included:

- Multiple-choice questions on the possible meanings of specific headlines, particularly those that may be difficult for L2 learners to understand;
- Rephrasing of headlines using passive voice, nominalization, infinitive verbal forms and article omissions (i.e., producing forms often used in headlines);
- A matching activity selecting appropriate headlines for different press articles;
- A matching activity selecting captions to go with different photographs;
- Determining the structure of an article and whether the how and when of the journalist's viewpoint was made explicit. This included work on link-words and modals.

Following this introductory task, students then worked in group settings for the remainder of the project.

4.2.2 Pre-task training: Creating a Webpage

First, the research was explained to the students and once they agreed to participate they were randomly allocated to groups (see Table 3). Those in the ICT groups, whether working collaboratively or individually, were given a pre-task
training to help them master the use of Dreamweaver. This happened during a 55-minute period in which the main functions of the software were introduced and demonstrated. They then had to try and reproduce a Website that other students had created using the same software. A step-by-step handout out in French (L1) was given to help them through the process (see Appendix A). This handout was also posted online for later reference.

4.2.3 Preliminary tasks: browsing, comparing, analyzing

The aim of the first phase of the project (Appendix B), including the two preliminary tasks, was to extend the scope of the introductory tasks and further develop the students’ awareness about newspaper articles. Thus these tasks gave the students opportunities to browse through printed material or surf the Web, while at the same time, the teachers could direct the students by way of a support material (e.g., a reading grid), as to what was to be looked at, compared and analyzed. The focus of these tasks was both on language forms and content. Students in ICT groups could directly access the material through the task Website and possibly do their research using the selected links provided, while the other groups were given handouts and printed newspapers.

- Preliminary task 1: Browsing news Websites/Newspapers
 (see Appendix C)

The aim of the first pre-task was to sensitize learners to the diversity, importance and impact of the news industry in Britain and the US. For example, in France, until recently, there were no press outlets focused exclusively on celebrities and scandals. Even though this has emerged in recent years, it is still in the form of weekly magazines rather than daily newspapers (as occurs in Britain and the UK). Therefore, it is important for French learners of English to be aware of this cultural difference and, in turn, be conscious of the power of the press in Anglo-Saxon countries especially with respect to celebrity.

Depending on the group they were in, students could access a variety of news Websites or browse through many printed newspapers. Their attention was drawn to differences between what seemed quality information, with many texts and serious content, from lighter subjects, including those most often illustrated by glossy pictures. Thus they were led to identify specific types of newspapers not readily
available on the French market: tabloids with smaller formats, bigger and coloured photos, and bold and big headlines. Finally, they were asked to compare how the same topic was given a different treatment in broadsheets and tabloids.

- Preliminary task 2: Reading a press article (see Appendix D)

The purpose of this reading comprehension task was to help the students uncover the mechanisms of the English-speaking press. It was based on an article entitled ‘The British press: What a scandal’ taken from ESL magazine Today in English. The text demonstrates that the whole press is to some extent driven to sensationalize the news; and that the nature of the press is a reflection somehow of the population as a whole. Learners were first asked to scan the text for general information and word clarification, and then led to draw conclusions from the various pieces of information given in the article.

4.2.4 Macro-task: The Webquest scenario

Having completed the stages as described above, learners were then given a scenario (see screen capture on Figure 4 below) which entailed a situation in which each one of them had a role to play.

In this scenario they all worked in a newsroom, choosing either to be an editor or a journalist. They were then given specific instructions on how to proceed to create their own newspaper or news Website.

Next they had to decide on the type and name of newspaper/news Website, choose the relevant sections, devise a layout design and make up pieces of news (this needed to be brief and coherent). Finally they were required to develop a full-length article or editorial. Template styles, section types and possible subjects were provided for inspiration, as hyperlinks attached to the online scenario, or as printed material for the ‘pen and paper’ groups (see Appendix E). All the groups were also given the evaluation criteria for the project (see Appendix F).
Introduction ...

You are now aware of the fact that newspapers are widely read in English-speaking countries, particularly in Britain. With such a diverse offer - ranging from high quality broadsheets to popular gutter and tabloids – newspapers in the UK are undoubtedly part of everyday life.

And now a strange scenario: Your role places you in the newsroom of an English-speaking newspaper!

To complete your mission, you will need to choose the kind of newspaper you would rather work for, i.e. a tabloid or a quality newspaper.

Your task

You will create the homepage of your newspaper, using information drawn from the World Wide Web. With help from your teacher, you will post it online for the world to see.

Pairwork: One of you will act as the editor and the other as a journalist but ultimately, you are both responsible for the end product.

The Process

With the help of the following template, make a draft of the homepage you intend to design but you may also create your own template using Dreamweaver if you want.

You have to:

1. Decide together on the name of your newspaper (be inspired by the various sites you will visit)
2. Select a variety of sections (in relation with the type of newspaper chosen) and create an index (list of sections with corresponding links).
3. Invent some pieces of news and write a few News in brief (headline+one sentence or two each) which you will have to link up with the homepage.
4. The journalist’s job: you will think of a story and type a 150-word article on it. Here are a few suggestions if you lack imagination.
5. The editor’s job: you will react to a significant event that just happened recently (in France or elsewhere) and will type a 150-word editorial expressing the paper’s viewpoint about it.
It is important to be imaginative but realistic, your website homepage will be all the more enjoyable.

Ressources

Here is a selection of English-speaking newspapers for you to visit:

- Journalism Net: A selection of the major US papers
- UK daily newspapers: A selection of British newspapers

The following sites will give you some help to write your articles:

<table>
<thead>
<tr>
<th>Basic structure of an article</th>
<th>An example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary</td>
<td>English dictionary</td>
</tr>
<tr>
<td></td>
<td>French-English dictionary</td>
</tr>
</tbody>
</table>

Evaluation

Have a look at the grid

Conclusion

The newspaper is the product of many minds and many hands. It is intended to keep you informed and entertained. The information covers not only politics but also sport, business and entertainment.

It is up to you as a reader to remain critical of what you read and to have an awareness of how meaning can be constructed through different reporting styles and varying photographic techniques.

Figure 4. Screen capture of the Webquest scenario

4.2.5 Subtask: Writing an article/editorial

If learners were in collaborative groups, both an article and an editorial were required. Those who did not work in this way could either choose to write an article or an editorial. The learners were instructed that these should be of 150 words in length, and that they should write a text that fitted with the style of the newspaper chosen. Additional help was given through various resources such as the online
dictionary, links to basic rules for press article structure and writing, vocabulary list. This support material was also provided in a printed form for the non-ICT groups (see Appendix E).

5. Procedure

To undertake this study the following procedure was followed. Firstly, volunteer teachers were canvassed and recruited. Next the focus and the procedure of the research were outlined to the students in these teachers’ classes. Permission was sought and gained from the students and their parents. With respect to the students, information letters and consent forms were provided - one for the student and one for his/her parents. These were returned the following week, all 77 students agreeing to participate. The data were then collected in turn from the three classes, commencing at the beginning of the school year and continuing over a full semester. The following describes the stages of data collection:

1) As a first step, individual student profiles were determined as accurately as possible through various means:
 a) The students completed a standard computerized placement test (Oxford Quick Placement Test, known as QPT) to assess their linguistic competence. This test was administered by the class teacher during a normal class period. The results were collected together with the teacher’s evaluation records for each of the students. It was deemed that evidence from QPT results would allow for the identification of low-achieving students but that teachers’ evaluation could further help fine-tune this aspect, especially with regard to the case studies in Chapter 5.
 b) A short written text was collected at the same time and kept as an indicator of the students’ regular standard of work.
 c) A questionnaire (see Appendix G) was administered to help evaluate the students’ initial attitude towards the task.
 d) An awareness test (see page 71), measuring the students’ initial knowledge of the domain studied in the project (the English-speaking press as genre and content) was also administered, along with the attitude questionnaire on separate, but concurrent days.
e) During the two-day visit to administer the attitude questionnaire and the awareness test, audio-visual equipment was set up in the classrooms to familiarize the students with it.

2) On the third visit, the students commenced the actual project: the tasks description was posted online for the ICT groups while there was printed material for the pen and paper groups. The tasks, designed in coordination with the selected teachers, followed the lines shown earlier in Table 4. To enable the completion of this, 6 to 8 periods were allowed (each period lasting 55 minutes).

3) Several dyads from each of the focus groups (groups A, performing ICT collaborative tasks, and groups B in alternative pedagogical settings) were recorded on video. Recordings were made during both the preliminary tasks and the subsequent macro-task.

4) In the next teaching period after all the students had completed the tasks, a post-task questionnaire (see Appendix H) was administered and the awareness test (see step 1) was used as a post-test. Six months later, another test, based on the items of the pre- and post-tests, was administered to assess long-term retention of the knowledge acquired (see page 73).

6. Data Analysis

As indicated above, several types of data were collected for this research, with three complementary purposes in mind. These included: 1) data about the learners, 2) data about the learning process, and 3) the product of the learners’ activity. Because this research was part of a larger study, some of the instruments were developed by the team. The questionnaires, for instance, were designed, administered and coded by other members in the team. However, the data treatment and analysis presented in this thesis is my own. The questions used for the purpose of this dissertation are recorded in Appendices G and H. To ensure inter-coder reliability, all the data undergoing a scoring procedure by more than one rater (as is the case of the awareness tests) were subject to a percent agreement of 0.85, calculated on a subset of the data. However, only one rater performed the scoring of the final product and the written production so as to minimize discrepancies in judgement and evaluation. It should be noted that this process was entirely distinct from the teachers’ own evaluations and was not reported to the students.
Type of data and the different steps of our analysis are described below in more detail.

6.1 Data about the learners

The data about the learners were collected by way of the Oxford Quick Placement Test (QPT), teacher evaluation records, pre-task and post-task attitude questionnaires, pre-task, post-task and delayed awareness tests, and a short text from a previous assignment. Placement tests and teachers’ records helped categorize low-achievers. Questionnaires were designed with two main purposes in mind: firstly to examine whether an initial positive attitude necessarily meant greater success in the project (as it was commonly thought, and as motivation theories tend to demonstrate); and secondly, to determine if the students’ personal experience of ICT use and collaboration had an impact on the product and the perception they had of their own performance. As for the awareness tests, they were designed to measure the students’ familiarity with the domain.

6.1.1 Placement tests results

Students were categorized according to their proficiency level in the QPT. Results on the placement test determined who would be regarded as a low-achiever by the study. A statistical mean was calculated and those who fell in the lowest quartile were considered as under-achieving language learners. In addition, teachers’ evaluation records for each student were also kept in the hope to fine-tune the results, particularly with regard to the case studies.

6.1.2 Attitude questionnaires (pre- and post-)

The purpose of the attitude questionnaires (see Appendices G and H) was to uncover any particular conditions that could affect students’ performance in both positive and negative ways. The data were examined to identify the learners’ background (e.g., whether they owned their own computer, or they spent lots of time on the computer, or they had already worked collaboratively in the past). A statistical treatment was also applied (means, Chi square) to uncover any particular variable with a significant impact on the students’ profile. Next the questions exploring the learners’ perceptions of the task and their motivation for doing it were examined.
This allowed for a better understanding of both the learners and their initial perception of the task as defined by the teacher and whether completing the task (and the conditions under which it was completed) affected this perception.

6.1.3 Awareness tests (pre-, post- and delayed)

The awareness pre- and post-tests highlighted some crucial aspects of the English-speaking press (see Table 5). For example, they included questions about newspaper names, front page or homepage key elements, press vocabulary and so forth.

The pre- and post-tests were carefully designed and undertaken in a rigorous way with the first being administered just before the beginning of the project, and the second, a recall test, some little time after. To code these data a numerical score was given to each student according to the scoring procedure described in the table below. A maximum score of 25 points was possible. All awareness tests were administered in the students’ L1 (French) and translated here for the purpose of this thesis.
Table 5

Awareness tests (pre- and post-) and coding procedure

<table>
<thead>
<tr>
<th>No</th>
<th>Questions</th>
<th>Score /25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cite at least 3 American and 3 British dailies:</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>What is « The Sun »?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>English tabloid.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>In your opinion, are there differences between a print newspaper and an online version? Specify:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Archives can be viewed, updated for content, have hyperlinks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>More in-depth analysis on print copy.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Concerning articles, do you think there are differences?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>If yes specify:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Articles not always available on the Web.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longer and more illustrated articles on print copy.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>What type(s) of information can we find on an online news homepage/newspaper front page?</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Name of Website / date / latest news / index / links / headlines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of newspaper / date / feature story / headlines / illustrations / sections / news in brief.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>What can affect the layout of the news page / front page?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>An important event.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Website or newspaper type.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>What is the French translation of the following words: the circulation, an editor, a daily, a tabloid, the readership, current affairs.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Le tirage, un rédacteur en chef, un quotidien, la presse a scandales,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>le lectorat, l'actualité.</td>
<td></td>
</tr>
</tbody>
</table>
The delayed post-test (see Table 6) was administered a few months after the project and included three similar items to the pre- and post-tests:

- Differences between a print and an online edition of a newspaper (item 3)
- Main components of a news homepage/ newspaper front page (item 5)
- Press-related lexical items (item 7)

The delayed test was designed as a capture test (i.e., knowledge has gone to long-term memory and can be triggered for recall). Thus the purpose of the delayed post-test was to examine the effect of time on the cultural awareness related to newspaper knowledge.
Table 6
Awareness tests (delayed post-) and coding procedure

<table>
<thead>
<tr>
<th>No</th>
<th>Questions</th>
<th>Score /25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is a ‘tabloid’?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gutter press, gossips.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cite at least two of them:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>The sun, the daily mirror, the daily mail</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>In your opinion, are there differences between a print copy and an</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>online newspaper?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updated information online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only main articles on the Web.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>More in-depth information on paper.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>What are the major differences between quality press and</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>‘tabloids’?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tabloids mean to sell: dramatize information, offer images, buy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information, propagate rumours, mainly interested in celebrities’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lives.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broadsheets try to be objective, verify sources.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>What type(s) of information can we find on an online news</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>homepage/newspaper front page?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of Website / date / latest news / index / links / headlines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of newspaper / date / feature story / headlines / illustrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ sections / news in brief.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>If you had to write a press article, what are the two ways of</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>writing the first paragraph?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General introduction or example.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>What is the French translation of the following words: Headline,</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>caption, a daily, a broadsheet, readership, current affairs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gros titre, légende, quotidien, journal de qualité, lectorat,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>actualité.</td>
<td></td>
</tr>
</tbody>
</table>

A statistical comparison between pre- and post-tests was implemented (means, repeated measures Analysis of Variance (ANOVA), t-test and analysis of regression) to determine whether the project developed the learners’ awareness of the domain studied, and if there was any significant difference, whether this was fixed in time. To explore this further, a comparison was made between the post-test and the delayed post-test.
6.2 Data about the learning process

The data for this part of the study were collected by way of video taped interactions. These data were analyzed to uncover any potential differences between the four settings in terms of the way the tasks were undertaken. This included exploring how the collaboration was managed (such as how cooperative the learners were when working together and whether or not they worked in concert or independently); examining the utility of computers for engaging in the task; and investigating how technology affected how the learners worked, either together or alone. In the process it was also possible to determine if there were specific difficulties learners encountered when engaging in the task.

Students’ performances in the preliminary tasks were also scrutinized. Because these tasks consisted of questions of graded difficulty, it was possible to compare how learners succeeded or failed to succeed in their various groups. Of particular interest was whether or not there was a particular pattern of success or failure and, if so, whether such a pattern confirmed Spiro’s theory.

6.2.1 Analysis of the videos of on-task activity

To examine the on-task behaviours of the students, a qualitative analysis based on an examination of the video recordings was employed. These were then written as case studies. A bottom up approach was used to examine what learners did when they performed the task. Videos were scanned and episodes that best illustrate the collaborative and technological aspects of the task were selected. Next the video transcripts were analyzed to explore if there was evidence of those processes deemed facilitative of SLA (e.g., comprehensible input and output, noticing and feedback). Episodes of teacher feedback and student interaction were further analyzed using discourse analysis based on similar SLA research (Mackey et al., 2003).

6.2.2 Analysis of the preliminary tasks

Based on Spiro’s cognitive flexibility theory (see Chapter 2 page 27), the two preliminary tasks, totaling 30 questions, ranged from less to more cognitively demanding. The students’ responses to questions were collated and scored, a score being allocated for every question based on its cognitive difficulty. The weight allocated for each question ranged from 2 to 10 according to the cognitive load for
each question. Four categories emerged as a result, ranging from low cognitive difficulty (category D: 1 to 2 score points) to high cognitive load (category A: 10 score points). These are defined as follows:

Questions type D: Identification/selection of a word or group of word in a paragraph.

Questions type C: Identification/selection of groups of words in different parts of the text.

Questions type B: Identification/grouping of explicit information and moderate writing (information analysis, bottom-up process).

Questions type A: Analysis of implicit information requiring more extensive writing (use of acquired knowledge, top-down process).

Each student was assigned a total score based on this marking procedure. It provided a picture of how the learners, particularly the low-achievers, performed on the tasks.

A statistical comparison of these scores was undertaken by first calculating means, followed by a t-test comparing the low achievement group with the other learners.

6.3 Data about the products of the learners’ activity

This was the final evaluation undertaken during the project. The outcomes produced by the students were analyzed with respect to:

- **Visual code**: how well they abided by the ergonomic rules of print or online publishing, and their understanding about other aspects such as the visual elements usually associated with the front page or a homepage of a newspaper.

- **Syntactic code**: their use of temporal coherence, adequate use of link words and modals.

- **Discursive code**: their use of a journalistic and/or editorial style, adequate expression of standpoint, and organization of the different paragraphs.
6.3.1 Newspaper Webpage or front page

The analysis of the students' final productions, consisting of the Webpages and front pages, was undertaken with attention to how well the task performed matched the prescribed task, and whether or not more implicit expectations were met, and additional elements included. Hence, an assessment was carried out of the student productions from each of the four group settings (i.e., ICT collaborative focus groups, as well as ICT individual, paper collaborative and paper individual control groups), focusing on how satisfactorily the task had been completed, including examining the appropriacy of the learners' work.

The task included five distinct instructions\(^7\), as seen on the screen capture on page 66:

1) Decide together on the name of your news Website (be inspired by the various sites you will visit).
2) Select a variety of sections (in relation with the type of newspaper chosen) and create an index (a list of sections).
3) Invent some pieces of news and write a few “news in brief” (one headline and a sentence or two each), which you will link up with the homepage index.
4) The journalist's job: You will think of a story and write a 150-word article on it. Click here for a few suggestions if you lack imagination.
5) The editor’s job: You will react to a significant event that just happened recently (in France or elsewhere) and will type a 150-word editorial expressing the paper’s viewpoint about it.

The scoring of the final productions distinguished explicit instructions and implicit expectations. With regard to the latter, learner productions were also examined for evidence of the type of cultural references acquired as reported to occur in CALL. These aspects were analyzed and comparisons undertaken according to setting and to student ability. In addition, when the learner added original elements to the project that had neither been specified nor suggested (e.g., they created a whole

\(^7\) The instructions were slightly different depending on the pedagogical setting. Students in the paper groups had to create a print newspaper and students in individual groups could choose between the article or the editorial.
site rather than a single homepage, several newspaper pages, diverse illustrations and animations, additional articles, links, sections), this was taken into consideration as it was deemed as an indicator of creativity. Those relevant elements that were not necessarily expected were scored as additions because they were seen as evidence of learners’ involvement in the task.

Coding involved converting student production into numerical scores, with 13 points allocated for the “explicit instructions” criterion, 7 points allocated for the “implicit expectations” criterion and a maximum of 5 points allocated for additional elements (see Table 8 for details). The students’ competence in completing the various components of the task was thus examined in the following ways:

Table 7
Analysis of the final product

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Evidence</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How well are the instructions followed?</td>
<td>e.g., the length of the writing part was met, the various components of the task were completed, etc.</td>
<td>0 to 13</td>
</tr>
<tr>
<td>2. How well are expectations for the genre fulfilled?</td>
<td>e.g., having added a headline, denoting cultural knowledge, etc.</td>
<td>0 to 7</td>
</tr>
<tr>
<td>3. Are additional elements supplied?</td>
<td>e.g., logos, extra pages, etc.</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Details of the scoring procedure are presented in Table 6, which represents the scoring sheet used by the coder.
Table 8
Coding of the final product

<table>
<thead>
<tr>
<th>Explicit instructions</th>
<th>0 = No</th>
<th>1 = Yes</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of the page</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspaper / Website name</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>News in brief</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least 1 or 2 sentences</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sections / Index</td>
<td>2 scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Article</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editorial</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Article</td>
<td>150 words</td>
<td>4 scale</td>
<td></td>
</tr>
<tr>
<td>Editorial</td>
<td>150 words</td>
<td>4 scale</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implicit instructions</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>1</td>
</tr>
<tr>
<td>Paged sections / linked index</td>
<td>1</td>
</tr>
<tr>
<td>Photo caption</td>
<td>1</td>
</tr>
<tr>
<td>Dreamweaver frames / paper format</td>
<td>1</td>
</tr>
<tr>
<td>Article / Editorial</td>
<td>1</td>
</tr>
<tr>
<td>Headline / Titled editorial</td>
<td>1</td>
</tr>
<tr>
<td>Smaller subheading</td>
<td>1</td>
</tr>
<tr>
<td>Signed</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additions</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>News Webpages</td>
<td></td>
</tr>
<tr>
<td>Webpage title</td>
<td>1</td>
</tr>
<tr>
<td>Flash animation</td>
<td>1</td>
</tr>
<tr>
<td>Logos</td>
<td>2 scale</td>
</tr>
<tr>
<td>Additional news material</td>
<td>1</td>
</tr>
<tr>
<td>Newspaper Front pages</td>
<td></td>
</tr>
<tr>
<td>Place / Issue number / Price</td>
<td>1</td>
</tr>
<tr>
<td>Use of word processor</td>
<td>1</td>
</tr>
<tr>
<td>Logos</td>
<td>2 scale</td>
</tr>
<tr>
<td>Additional news material</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale for article/editorial</th>
<th>Scale for index</th>
<th>Scale for logo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 → no article/editorial</td>
<td>0 → no index</td>
<td>0 → no logo</td>
</tr>
<tr>
<td>1 → ≤ 50 words</td>
<td>1 → ≤ 3 rubrics</td>
<td>1 → trite logo</td>
</tr>
<tr>
<td>2 → 51-99 words</td>
<td>2 → > 4 rubrics</td>
<td>2 → relevant/original logo</td>
</tr>
<tr>
<td>3 → 100-149 words</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 → >150 words</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

78
The level of achievement for the various groups was ascertained and then compared by matching the task requirements against what the students actually finally produced (i.e., Webpage or front page). The total scores awarded for meeting both explicit instructions and implicit expectations were taken as indicators of the students' competence in doing the task. A statistical treatment was then applied (means, ANOVA, General Linear Model (GLM) procedure and analysis of regression) to show if a particular variable in the student profile had a significant effect on the students' product.

A qualitative examination was also undertaken to enable a thicker and richer description of the student productions. On this basis exemplars were selected for inclusion in the findings.

6.3.2 Written work (on task)

To determine whether there had been a shift in the learners' written production, the outcomes of this task were compared to the students' regular writing standards. For this purpose, the short text from a previous assignment and the on-task written work, that is, the students' articles or editorials, were coded based on three criteria (see Table 10 for details). Those criteria for assessment pertain to the completion of the task - the treatment of the subject (content) and the level of linguistic competence (language form). In addition, specific language features targeted by the project were also considered. These include the use of passive forms, link-words, modals and appropriate expression of hedging and standpoint, all of which had been the focus of the introductory task. Again, and as with Webpage/front page writing, coding involved converting performance into numerical scores. A total score of 15 is thus obtained, consisting of 4 points for content, 6 points for linguistic accuracy and 5 points for linguistic adequacy relating to use of lexicon and structures pertaining to the press as studied in class. In summary, therefore, the students' work was examined in the following ways:
Table 9

Analysis of the written work

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Evidence</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How well is the content addressed?</td>
<td>e.g., the information provided is relevant, organized, complete, etc.</td>
<td>0 to 4</td>
</tr>
<tr>
<td>2. How well is the language form respected?</td>
<td>e.g., words are adequate, sentences are correct and complex, paragraphs are adequately linked, etc.</td>
<td>0 to 6</td>
</tr>
<tr>
<td>3. Are specific grammatical forms targeted by the task included?</td>
<td>e.g., modals, passive forms, point of view, link-words, etc.</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Details of the scoring procedure are presented in Table 10, which represents the scoring sheet used by the coder.
Table 10

Coding of the written work

<table>
<thead>
<tr>
<th>Content</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realisation of the task and treatment of subject</td>
<td>Linguistic competence</td>
</tr>
</tbody>
</table>

4 points

<table>
<thead>
<tr>
<th>0.5 points</th>
<th>0.5 - 1 - 1.5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unacceptable presentation</td>
<td>Unintelligible</td>
</tr>
<tr>
<td>Unacceptable handwriting</td>
<td>Poor vocabulary</td>
</tr>
<tr>
<td>Instructions not respected</td>
<td>Reoccurring basic grammatical errors</td>
</tr>
<tr>
<td>Topic/subject not respected</td>
<td></td>
</tr>
<tr>
<td>Nonsense</td>
<td></td>
</tr>
</tbody>
</table>

1 - 1.5 - 2 points

<table>
<thead>
<tr>
<th>2 - 2.5 - 3 - 3.5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences are copied out from subject material</td>
</tr>
<tr>
<td>Topic/subject not completely respected</td>
</tr>
<tr>
<td>Superficial treatment of subject</td>
</tr>
<tr>
<td>Text structure unclear</td>
</tr>
</tbody>
</table>

2.5 - 3 - 3.5 points

<table>
<thead>
<tr>
<th>4 - 4.5 - 5 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of a problematic</td>
</tr>
<tr>
<td>Effort in making a coherent text structure</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4 points

<table>
<thead>
<tr>
<th>5.5 - 6 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked ideas</td>
</tr>
<tr>
<td>Organised development</td>
</tr>
<tr>
<td>Cultural references</td>
</tr>
<tr>
<td>Conviction, humour</td>
</tr>
</tbody>
</table>

Specific language features

<table>
<thead>
<tr>
<th>Adequacy of headline/article content</th>
<th>Adequate use of link-words</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.5 - 1 - 1.5 - 2 - 2.5 points</td>
<td>0 - 0.5 - 1 - 1.5 - 2 - 2.5 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence of an editorial standpoint (editorial)</th>
<th>Presence of modals, hedging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of an editorial standpoint (editorial)</td>
<td>Presence of modals, hedging</td>
</tr>
<tr>
<td>0 - 0.5 - 1 - 1.5 - 2 - 2.5 points</td>
<td>0 - 0.5 - 1 - 1.5 - 2 - 2.5 points</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Respect of journalistic objectivity (article)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Respect of journalistic objectivity (article)</td>
<td></td>
</tr>
<tr>
<td>0 - 0.5 - 1 - 1.5 - 2 - 2.5 points</td>
<td></td>
</tr>
</tbody>
</table>

Total /20
A statistical treatment was used (means, t-test and linear analysis of regression) to rate the on-task productions (written or computerized) against the pre-task essay for all the focus groups.

A qualitative examination was also undertaken so that thicker and richer descriptions of the students' productions could be made, and exemplars selected for inclusion in the findings.

6.4. **Summary**

It can be seen that a range of analyses were undertaken of the data collated for this research. A summary of these analyses for the three types of data (i.e., about the learners, the learning process and the product) is shown in Table 11:
<table>
<thead>
<tr>
<th>Data about the learners</th>
<th>Why</th>
<th>How</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Quick Placement Test (QPT)</td>
<td>To identify low-achieving students.</td>
<td>Low-achievers identified by low grades in the QPT and from teachers' records.</td>
</tr>
<tr>
<td>Teachers' evaluation records</td>
<td>To fine-tune identification of low-achieving students.</td>
<td></td>
</tr>
<tr>
<td>Pre-task and post-task attitude questionnaires</td>
<td>To identify any shift in attitude.</td>
<td>Measure initial and subsequent attitude towards ICT and/or collaborative tasks.</td>
</tr>
<tr>
<td>Pre-task, post-task and delayed awareness tests</td>
<td>To identify potential acquisition.</td>
<td>Measure initial and subsequent knowledge of the domain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data about the learning process</th>
<th>Why</th>
<th>How</th>
</tr>
</thead>
<tbody>
<tr>
<td>Videos of students or dyads working in the various groups</td>
<td>To document how students cope with the task, particularly in collaborative and ICT settings.</td>
<td>Describe strategies and work modes developed to work as a dyad with a computer in comparison with other settings.</td>
</tr>
<tr>
<td>Students' performance in preliminary tasks</td>
<td>To observe if there is a specific pattern in performance as cognitive difficulty increases.</td>
<td>The two pre-tasks answers were scored, collated and recorded on a 30-item data spreadsheet. This was analyzed quantitatively after questions were grouped according to their cognitive load.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data about the product of the learners' activity</th>
<th>Why</th>
<th>How</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page construction and layout</td>
<td>To assess the impact of ICT and collaborative settings against others on task completion.</td>
<td>Page construction and layout were scored and results were compared between groups of different pedagogical settings.</td>
</tr>
<tr>
<td>A short text from previous assignment</td>
<td>To identify any change in performance.</td>
<td>Measure task product against learners' regular work standard.</td>
</tr>
<tr>
<td>Texts from articles and editorials</td>
<td>To assess the impact of ICT and collaborative setting against others on linguistic performance.</td>
<td>Texts were scored and assessed against the students' regular work standard collected prior to the beginning of the project. In addition, they were also compared between groups of different pedagogical settings.</td>
</tr>
</tbody>
</table>
CHAPTER 4
FINDINGS: THE LEARNERS

While this research explores the effects of processes and products on project-based pedagogy incorporating both ICT and collaboration, it is necessary to first have a grasp of the learners’ background and psychological state. Thus this chapter presents the findings related to the analysis of the data about the learners. Their initial level of English is examined, as well as their previous experience with regard to ICT use. There is also an examination of their attitudes to the task and any shift of these in response to the conditions of the task. An investigation of learners’ knowledge of the content domain has also been undertaken to help uncover possible acquisitions in this area. Finally, the learners’ perception of their own achievement is presented.

1. Learners Profile

This first section concerns the analyses of the placement tests and the pre- and post-task questionnaires. It provides an overview of the participants’ level in English before outlining who the participants are, and, in particular, their previous learning experiences with regard to technology, and their history of computer use both in and out of school.

1.1 Identifying low-achieving learners

This research is especially interested in low-achieving learners and, as such an examination was undertaken to determine how they fared in the global project used in this study. This is compared to their results when undertaking traditional coursework. Therefore it is necessary as a first step to identify low-achievers and to do this, participants were categorized according to their initial linguistic proficiency.

Oxford’s Quick Placement Test (QPT), a computer-adaptive test that adjusts questions to the level of the student, was used. It includes a large bank of test questions, covering all levels of ability from Beginner to Very Advanced. The questions are displayed on-screen, and students respond using the keyboard and mouse. As each question is answered, the computer assesses the response and selects
the next question. The questions are selected according to whether a student's previous answer was right or wrong. In this way, the questions become progressively easier or harder until the system has made a reliable assessment of the student's level.

The QPT software was installed on the IT network of the three schools and performed electronically by the students prior to the experiment, during a normal class period. The examination of the scores on the QPT showed that the average score among the participants was 44.7, and that 50% of the scores fell between 39 and 49 (i.e., + or − 5 score points from the mean). It was agreed that a score less than or equal to 38 was then evidence of a low score with 16 out of 77 learners identified as having under-achieved on the QPT. Figure 5 shows how scores are distributed amongst the participants.

![Figure 5. Distribution of QPT scores among participants](image)

Over-achieving

≥ 49

Under-achieving

≤ 38

n=16

Average

39 ≤ x ≤ 48

For the purpose of the study, those who were categorized as having under-achieved on the QPT were regarded as low-achievers. They constituted a focus population for later analysis. This involved the examination of two variables (ICT and collaboration) to determine whether they have an effect on this population's attitude towards and performance on task. Unfortunately, because of the random assignment of the participants (see page 58), the individual/ICT group had no under-achieving students in their group, while the ratios in the other three groups were either 1/3 (collaborative/paper group) or 1/4 (individual/paper and collaborative/ICT
groups). The composition of the various groups regarding language proficiency is depicted on Figure 6:

![Figure 6](image)

Figure 6. Participants' QPT scores in each group setting (n = 77)

Table 12 further shows to which sub-group the 10 low-achievers in the collaborative/ICT groups belong:

<table>
<thead>
<tr>
<th>Low-achievers in focus groups</th>
<th>Teacher 1</th>
<th>Teacher 2</th>
<th>Teacher 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-achievers in COLL+ICT groups</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

However, it should also be noted that only 8 low-achievers of the 16 identified by means of the QPT, were actually low-achieving in the class teacher’s view. On the other hand, 11 other students, who did not under-perform on the QPT, were regarded as low-achievers by the class teacher. This relative discrepancy does not invalidate the QPT or the teacher’s evaluation. Rather, they may be seen as complementary: the QPT provides a single shot analysis of the learner’s language competence while the teacher’s evaluation may also be based on criteria other than language (e.g., effort, involvement) and one determined over a longer time period, therefore reflecting the evolution and progress of the teacher’s opinion. Further, in this research, it was deemed necessary to take into account the class grade for each
learner because it was thought this could somehow impact on the learner's self-image and feeling of self-competence. For example, a student with an average score on the QPT could still regard him/herself as low-achieving because of his/her class grades.

As a consequence, teacher evaluation records for each student were also considered when the results were analyzed, particularly with respect to the case studies. As such, the learners' grades were recorded and considered in later analyses. Figure 7 illustrates how the students' scores were ranked from A (highest) to D (lowest):

![Pie chart illustrating the distribution of teachers' evaluation records for all 77 participants.]

Figure 7. Distribution of teachers' evaluation records for all 77 participants

1.2 Learners' background

All 77 participants in this study answered the questionnaires. The average age of the participants was 16 years and 7 months at the time the data were collected. Among them, 52 were placed in a pedagogic setting that involved ICT (the other 25 worked on paper documents), and 55 were placed in a collaborative setting (the other 22 worked individually). Further demographic details of the research cohort are presented below:

1.2.1 ICT Learning experience

73 students indicated that they felt confident in using a computer and among them, 80% had been making use of computers for at least two years, with an
additional 15% between one and two years (pre-task questionnaire, question 4 [pre-Q q4]). 75% of the students said they learned using computers at school, 65% also learned at home and 44% with their friends (pre-task questionnaire, question 5). 10% learned by themselves and 8% by reading specialized books. Interestingly, girls indicated having learned at school (91%) whereas only 53% of the boys reported similarly. This was significantly different ($X^2 (1, N = 77) = 14.1, p = .0001$).

1.2.2 Technological competence

The general level of competence amongst the students varies with 26% indicating they knew how to use a computer "a little", 49% "well", and 22% "very well" (see pre-task questionnaire, question 12). Only 3% of the respondents indicated they did not know how to use a computer at all. However, when asked about their overall competence in using computers a gender difference did emerge. Specifically, boys appear to be more confident than girls with 41% saying they had a very good level of competence compared to only 14% of girls, this showing a statistically significant difference ($X^2 (3, N = 77) = 8.63, p = .035$).

When asked directly about their feeling of self-competence, 22% of the cohort said they felt perfectly at ease with computers and the majority (54.5%) said they felt capable of sorting themselves out with some effort (pre-task questionnaire, question 11).

As far as the use of different types of software is concerned, 4% of the participants said they did not know how to use the word processor program Word and nearly 8% expressed the same inability about the Internet Explorer browser at the time of data collection.

1.2.3 Equipment

72 owned a computer at home (equipment rate was 93.5%), and among them 19 had access to two or more computers. Students mainly shared access to the computer with other members of the family, but 13 students owned their own computer. Among the 72 students who answered the question about Internet access, 62 mentioned that they had an Internet connection at home (86%) (pre-task questionnaire, questions 1-3).
1.3 Computer use

1.3.1 Using computers and the Internet for personal purposes

Outside school, 36% of the participants revealed they used computers on a daily basis and 32% several times a week (pre-task questionnaire, question 6). 18% only used a computer once a week and 14% less than that. Thus the majority of the participants, more than 68%, used a computer regularly (at least 2 or 3 times a week). Here again, a gender difference seemed to exist with 82% of the boys saying they used a computer several times a week, whereas only 56% of girls reported similarly. However, this was not statistically significant ($X^2 (1, N = 77) = 6.56, p = .161$).

Further, most participants (75%) indicated that, when they used a computer, it was mostly for a period of 30 minutes to two hours (pre-task questionnaire, question7).

It would seem that domestic use predominated: 80% said they used a computer at home on a frequent or regular basis versus only 35% at school; 18% made use at a friend’s and 2.5% in a public place (cybercafé) (pre-task questionnaire, question 8). Of the girls, 50% said they never used a computer when visiting their friends versus only 28% of the boys, but again this was not statistically significant ($X^2 (1, N = 77) = 5.44, p = .066$). However, there was a significant difference between the 65% of boys who reported playing computer games on a “regular” or “very frequent” basis compared with only 37% of the girls ($X^2 (3, N = 77) = 13.8, p = .003$).

In terms of computer use, the three types of activities most commonly reported (pre-task questionnaire, question 9) were: Internet searches for personal purposes (79%), word processing (72%), and Internet searches for schoolwork (69%). Audio and photo softwares (55%), chat and messaging (53%) and games (48%) were also mentioned, but were used by a smaller proportion of students.

1.3.2 Internet and computer use in schools

Almost all of the students (99%) had previous experience of working in the computer lab at school (pre-task questionnaire, question 13). For 52% of the students, it had been in a foreign language class (English), 40% in a mathematics class and only 6.5% in a French class (Arts). When asked their opinions regarding Internet use (pre-task questionnaire, question 10), 12% of the respondents indicated a
feeling of the Internet being totally useless in a school setting, whilst 56% find it very useful or even essential. Whether it was in maths, foreign language or literature, 92% of those who worked with a computer said they enjoyed the experience, even though 37% acknowledge they disliked some aspects of it.

2. Motivation for the Project

This section describes those variables hypothesized to affect the learners' motivational state.

One of the objectives of the research was to verify if the project used was indeed motivating and if motivation was somehow enhanced by collaboration and technology. Therefore a questionnaire was designed and administered to the learners that included questions about the student's attitude to the task and its various aspects. Pre-task attitudes allegedly illustrate the learners' expectations while post-task they may certainly reflect the learners' experience. Answers from the different pedagogic groups were then analyzed and are presented below.

Attitudes were first examined in relation to the task as a whole, both pre- and post-task, then more specifically towards the two independent variables that determined the different treatment groups: technology and collaboration. The attitude of low-achievers is further discussed. Finally, the overall impact of the task on motivation is discussed, in particular with regard to its social value (and specifically through publication on the Web).

2.1 Attitude towards the task

Learners' general attitude was investigated because it is acknowledged to be a contributing component of motivation (Ayres, 2002; Dörnyei, 1994b, 2003; R. C. Gardner & Lambert, 1972; MacIntyre & Charos, 1996). The corresponding items in the questionnaire were multiple-choice questions that read: "I feel like doing this type of work ..." (pre-task), and "I have enjoyed doing this type of work ..." (post-task).

• Attitudes before the task

The participants appeared to have a positive attitude as negative responses only account for 8% of the total answers. It should be noted, however, that the
learners placed in individual settings appear mostly indifferent to the situation since “as usual” is the answer of 60% to the question.

In comparison, the most positive a priori attitude was found amongst those who were assigned to work collaboratively, and more particularly, those also working on computers. When asked how enthusiastic they were at the prospect of the project, almost 60% of those in this pedagogic setting indicated they were willing to do this work “more than usually” or “very much” (see Figure 8), which compares favourably to the total cohort where only 46% gave such an answer (and only 33% of the groups other than collaborative/ICT).

![Figure 8. Pre-task learner attitude to the project](image)

- Attitude after the task

73% of all students said they enjoyed the task “more than usual” or “very much”, a significant shift from the pre-task situation (46%), as illustrated by Figure 9:
Figure 9. Comparison of pre- and post-task attitudes

When these post-task responses in all four settings are compared to those responses given pre-task, it is apparent that attitudes are more positive after the task than before for all the different group settings, and this is especially being for the individual/paper group (see Figure 10).

Figure 10. Post-task learner attitude to the project
Stacked positive answers further show individual groups to have a more positive appreciation of the task (see Figure 11).

![Chart showing positive post-task attitudes](chart.png)

Figure 11. Positive post-task attitudes

The specific pattern for each group is examined in more detail below.

2.1.1 Change pattern in each pedagogic setting

Post-task answers from the students working individually on paper (see Figure 12) differ considerably from their pre-task responses. While 6 students responded that they felt “no different than usual” in their attitude towards the task initially, all 10 students eventually reported that they enjoyed it more than they normally do, indicating a positive attitude to the project they had just completed. Furthermore, this group’s post-test attitude ranks highest of the four group settings.
Figure 12. Change of attitude towards the task in the individual/paper group

The attitude of those who worked individually on the computer also developed in a favourable way, with notably almost 40% of the participants having a very positive view of the task after they completed it (see Figure 13).

Figure 13. Change of attitude towards the task in the individual/ICT group

In the collaborative groups, the results show that the attitude of the students was more stable; however, it should also be noted that they also had the most positive attitudes about the project from the onset. Yet, for these groups there is an increase of both negative and positive answers, although it should also be noted that the positive answers increased more than the negative.
Specifically, the pattern of responses from the collaborative/paper group differs by only a small percentage pre- and post-task, moving from 40% who contended this work would be the same as usual to only about 20% after completion, indicating that the post-task attitudes tended to be more positive (see Figure 14).

![Figure 14. Change of attitude towards the task in the collaborative/paper group](image)

A similar pattern occurs in the collaborative/ICT groups, with less “as usual” responses occurring after the task. Generally, however, the responses are very positive in this collaborative/ICT group with responses such as “less than usual” and “as usual” accounting for 30% only of those given post-completion of the project, with “more than usual” and “very much” being the most common responses. This is in contrast to the collaborative/paper group (above) where only 7% hold such a very positive view (see Figure 15).
Figure 15. Change of attitude towards the task in the collaborative/ICT groups

An effect of collaboration is thus evidenced by this analysis. However, this analysis combines students who worked collaboratively with ICT and those who worked collaboratively with paper-based tasks (with those students working collaboratively on the computer accounting for half of the participants). Given the proportion of students working on the computer (i.e., one group with each teacher – Groups A), there might be an effect of this large number of respondents compared with other smaller groups (i.e., groups B with different methodologies with each teacher). Moreover, the collaborative/ICT group does not appear to be homogeneous, being comprised of three groups taught by three different teachers. To consider whether or not there might be differences between the groups taught by different teachers, a comparison was made just between the teachers’ A groups (collaborative/ICT). For the pre- and post-task attitudes of students in such groups see Figures 16 & 17:
Figure 16. Learners' expectations (pre-task) in the collaborative/ICT groups

Post-task appreciation is generally found to be more positive in all collaborative/ICT groups; however, differences between the groups are apparent, and these are detailed in the next section.
2.1.2 Focus groups variation and relation to the alternative group

- Teacher 1's students

Teacher 1's collaborative/ICT students expressed the most enjoyment post-task. However, there was also a positive change in perception of Teacher 1's alternative B group (individual/paper). In fact when compared to the pre-task situation, group B (20%) were less positive pre-task than Group A (55%) (see Figure 18), possibly an effect of the prospect of working with ICT and/or collaboratively; thus, the shift is greater in the non-ICT group (i.e., B).

School/Teacher 1:

I feel like doing this kind of work...
(pre-Q q15)

![Bar graph showing learner attitudes](image)

Figure 18. Teacher 1’s learners’ attitudes (pre-task)

- Teacher 2’s students

Compared to the results of Teacher 1’s group, the attitude of both groups working with Teacher 2 is more stable both pre- and post-task, although Group A’s attitude diminished, while Group B’s became more positive. Specifically, the results show an initial positive attitude of 53% for the collaborative/paper group compared to 78% for the collaborative/ICT group; while the students’ post-task answers show a positive view with 67% of students in both settings indicating an overall satisfaction with the project. However, the collaborative/ICT group, with 28% initially “very” enthusiastic students, dropped to only 17% holding such a very positive outlook once the project was completed. This is a trend unlike Teacher 2’s B group. As such,
while this group's very positive expectations ranked highest among the three teachers' A groups pre-task, its appreciation was the lowest after the task (see Figure 19).

![Chart](chart.png)

Figure 19. Pre- and post-task positive attitudes in collaborative/ICT groups

- Teacher 3's students

The pre-task expectations of the students in Teacher 3's groups were comparable and relatively neutral for the majority: Students in both groups initially indicated a similar pattern of responses with Group A showing 73% having a positive response and Group B, 64%. However, post-task, Teacher 3's students are found to have mixed feelings about the task, though there appears to be more positive responses, as Figure 20 illustrates:
Figure 20. Teacher 3’s learners’ attitudes (post-task)

Overall the results described above suggest there may be a “teacher” effect with regard to the students’ attitude to the task. This was apparent when the pre- and post-task attitude results were examined and showed a different profile of responses for the three different collaborative/ICT groups (as shown earlier in Figures 16 & 17). It is further highlighted because of the generally similar pattern of attitudes pre- and post-task for the collaborative/ICT and the alternative group taught by the same teacher. This finding is illustrated in Figures 21, 22 & 23. These illustrate pre- and post-test students’ answers for each teacher and reveal a specific pattern for each of them:
Figure 21. Change in Teacher 1’s learners’ attitude to the task

Figure 22. Change in Teacher 2’s learners’ attitude to the task
2.1.3 Summary and conclusion

Together these findings show that:

1) For all groups the expectations for this project (i.e., the tasks) were generally high and collaboration was viewed in a particularly positive way;
2) For all students the experience with the task was positive and deemed to be more enjoyable than usual by most;
3) The impact of the two variables of collaboration and ICT was most apparent on the pre-task attitude of Teacher 1 and 2’s students. However, these variables did not appear to have an impact on the learners’ post-task experience;
4) Overall, it would seem that the learners’ attitude to the task depends more on the teacher, or at least on the learning environment created by teachers (which may include the technical support available at the school, the availability of computers outside class time or the classroom configuration for example). If anything, collaboration and ICT do not seem to live up to the learners’ expectations with regard to the task.
In conclusion, therefore, it would appear that the determining factors for the attitude of the learners towards the task lies, in the main, with how the teacher succeeds in managing the learners while they are undertaking the task, and how such a task differs from regular work as perceived by the learners.

2.2 **Attitude towards ICT**

Pre-task, participants seemed to hold favourable opinions about ICT work in class. They were more likely to mention the positive rather than the negative aspects of it, and this was true for learners in all group settings. The percentage of students providing positive comments is shown in Figure 24:

![Bar chart showing positive comments](image)

Figure 24. Citation of positive aspects of working with ICT (pre-task)

The positive views expressed by the participants related to particular themes including ICT being described as: interesting/fun; new ways of working; efficient; autonomy; easier; practical/concrete. These categories are exemplified by quotes taken from the students’ responses below (pre-task questionnaire, questions 13 & 19):

INTERESTING/FUN

- We should work more often with the computer. Students would be more interested.
- It’s more interesting and it’s a change.
• I like working on a computer, it's much more interesting than some other classes.

• We should get offered projects such as this in other subjects. I am very much interested, but I have problems in English.

• I like new technologies very much.

NEW WAYS OF WORKING

• Working with a computer may be interesting because we can discover new ways of learning.

• I like this project because we discover new ways of working and learning. This ICT project seems interesting and it will make us change our working methods.

EFFICIENT

• Working with technologies is more efficient.

• We can correct (mistakes) right away.

• We can make more progress.

EASIER

• With ICT we get good marks.

• It's easier to work with technologies.

PRACTICAL/CONCRETE

• The project appeals to me because I would like to work as a journalist.

• I think that this work will make me more familiar with computers.

• To me, creating a Website is stimulating; it's different from normal classes.

• Working with a computer is more practical.
Although less prevalent, the participants also mentioned some negative aspects of working with ICT. The proportion of students citing negative aspects is shown in Figure 25:

![Figure 25. Citation of negative aspects of working with ICT (pre-task)](pre-Q q13b)

The negative views expressed by the participants, including comments about ICT are exemplified below; they have been classified as: different; inefficient; more difficult; and time-consuming:

DIFFERENT

- I am not used to it and I don’t like it, that’s all.
- Not as lively as normal classes.
- We feel lonely.

INEFFICIENT

- It’s less work and less learning.
- Less interesting, it’s like a game.
- I do not think working with a computer makes things any better, I think we should have a smaller number of students per class.
- I do not like English, even if we use computers.
MORE DIFFICULT

- Working with ICT is more difficult.
- It is more difficult to remain concentrated.
- We need to be much more organized.
- We could not find an agreement on how to work.

TIME-CONSUMING

- Boring spending hours on the computer.
- Takes too much time to get started.

It is interesting to note that many of negative comments are the polar opposite to the positive aspects cited earlier. Hence, depending on the learners, technology-based class work is considered as more or less efficient, and easier or more difficult, with novelty being regarded as a plus for some students and minus to others. This is in accordance with Raby’s (2009a) findings showing that most motivational factors can be viewed positively, negatively, or even neutrally, depending on the learners. However a clear positive aspect revealed here is the practical implications of using technology (getting something tangible done) while the time it takes was cited as a negative aspect.

Post-task, experience with ICT appears to have had an impact on the attitude of the students: The post-task answers of those students who participated in the ICT groups (be this individually or collaboratively) are, in the main, very positive about this medium. 100% of the cohort of collaborative/ICT students cites at least one positive aspect of working with ICT and 92% of the individual/ICT group do likewise (post-task questionnaire, question 6a). With regard to the negative aspects, 31% of the collaborative/ICT students mention a negative aspect (compared with 53% pre-task), while the results show a slight increase with individual/ICT students (from 55% initially to 58%).

Post-task, the comments are similar to those areas indicated pre-task; however, autonomy was also mentioned at this time:
AUTONOMY

- We are free
- We don’t need the teacher
- I think working on a computer is a good thing so we can work more autonomously.

Thus, working autonomously (i.e., not relying so much on the teacher) was seen as a positive outcome of completing such project.

2.3 *Attitude towards collaboration*

The students' attitude towards collaboration was initially positive and little difference is observed post-task, that is the learners remained very positive once the project was completed. However, it should be noted that learners in collaborative/ICT groups are more positive after the task than those in the collaborative/paper group, which is the opposite of the pre-task situation (see Figures 26 & 27).

![Collaboration will help me achieve...](pre-Q q16)

Figure 26. Pre-task perception of collaboration
2.4 Attitude of low-achievers

The attitude of low-achievers in relation to the two independent variables, ICT and collaboration, is illustrated by the following collection of answers to open-ended questions.

2.4.1 On ICT

These questions (pre-task questionnaire, question 13 and post-task questionnaire, question 6) pertained to the positive and/or negative aspects of ICT. Answers from the ten low-achievers of the A groups (i.e., collaborative/ICT) show that these students feel positive overall about working with a computer (see Table 13):
<table>
<thead>
<tr>
<th>Participant Nb</th>
<th>Pre-task attitude towards working with ICT</th>
<th>Post-task attitude towards working with ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes, it is lots of fun. It is more fun.</td>
<td>Yes, I liked it a lot because I laughed so much</td>
</tr>
<tr>
<td>13</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>Yes, it brings some diversity to the class.</td>
<td>Yes, because I think working on the computer is more interesting</td>
</tr>
<tr>
<td>23</td>
<td>Yes, I rather like this kind of work because it is very interesting to do searches, work and play on the computer.</td>
<td>Yes, because I think it is good to work on a PC.</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>29</td>
<td>Yes, it is quite fun and it gives us the opportunity to change support material and media.</td>
<td>Yes, it is a change from being seated behind a desk and watching the teacher. No, because the subject did not really appeal to me.</td>
</tr>
<tr>
<td>35</td>
<td>Yes, it is quite a change from a normal class, more fun, I feel like working more.</td>
<td>Yes, it is a change from the usual classes. It is nicer.</td>
</tr>
<tr>
<td>45</td>
<td>No, because it is too long and often we do not understand at all.</td>
<td>Yes, I like this work because the class is more relaxed; the atmosphere is relaxing.</td>
</tr>
<tr>
<td>49</td>
<td>Yes, it brings some change to the class routine.</td>
<td>Yes, because it is a change from the usual classes and we are more autonomous. No, I do not feel I have made progress in English.</td>
</tr>
<tr>
<td>79</td>
<td>Yes, I find it easier to work on a PC than on a table.</td>
<td>Yes, because it was not as stressful as the normal class No, because it is more difficult to remain concentrated.</td>
</tr>
</tbody>
</table>
The only negative pre-task comment concerned time and complexity. However, post-task, the same student reported having enjoyed the relaxed atmosphere created by the ICT learning environment. It is worth noting as well that there are more negative comments post-task, and that the reasons for it relate to content and language, and difficulties students found concentrating, although such negative comments are cited along with other positive aspects.

2.4.2 On collaboration

To examine the effect of collaboration on low-achievers, the answers from such students whose setting included collaboration as the only variable, were examined. As indicated previously, because of random assignment (see Chapter 3), only four low-achieving students worked in such a setting (see Figure 6 page 87). A selection of their answers is presented in Table 14:

Table 14
Low-achievers’ attitude towards collaboration in the collaborative/paper group (post-task)

<table>
<thead>
<tr>
<th>Participant Nb</th>
<th>Post-task attitude towards working collaboratively</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Like/Dislike – Why [post-Q q7]</td>
</tr>
<tr>
<td>26</td>
<td>Yes, because it is nicer to work as a pair.</td>
</tr>
<tr>
<td>30</td>
<td>Yes, because when you experience difficulties, the other is here to help.</td>
</tr>
<tr>
<td>40</td>
<td>Yes, because my level is low and I could get help from my teammate. No, because it requires us to be much organized.</td>
</tr>
<tr>
<td>48</td>
<td>Yes, because we could expose our ideas and thus see the different viewpoints. No, our ideas would contradict but we could still get along and find a middle way.</td>
</tr>
</tbody>
</table>

It would seem that all four learners appreciated collaboration, though to varying degrees. The perceived downsides of collaboration are related to work organisation and negotiation. Another of low-achievers’ attitude to collaboration is exemplified by Student 1 (collaborative/ICT group) who when asked whether he was
keen to do the same kind of work again (post-task questionnaire, question 12), answered somewhat frankly:

"I do not want to do it again because ... I felt interest but not motivation. It's like all pair work: we are not so much interested as we think the other can do more."

2.5. Publication as a factor of motivation

One feature of the project was that the final product was to be published (depending on the group setting, this occurred either online or in the classroom). This represents a significant departure from regular classwork and traditional evaluation, by way of the teacher marking it. It was hypothesized that the publication could trigger intrinsic motivation and, as such, this aspect was examined as a way to further understand the learners' motivational state.

Evidence was sought using indicators such as enhanced effort, and possibly pleasure and/or stress. Pre- and post-task opinions were collected by way of the questionnaires, these being analyzed and contrasted in the following sections.

2.5.1 Marking/Publishing and motivation: Pre-task

According to the responses provided pre-task, marking was deemed to be the main motivation for effort for more than 60% of the participants. In contrast, it was suggested that the publication of the final project would lead to greater effort for about a third of the cohort. A similar proportion indicated they believed publishing their work enhanced pleasure. Figure 28 details those results, revealing the potential motivational impact of both factors:
An examination of the pre-task responses of the participants working in the different pedagogic settings shows that the effort produced for publishing their work was cited as the main motivation by all the groups, except the collaborative/ICT groups. For this group, 53% indicated that pleasure was more important with effort recording but 18%.

In contrast, having one’s work shown to others by way of publication, was thought to increase stress for 27% of the collaborative/paper and individual/ICT groups. Yet, an equal proportion of this latter group signalled no effect whatsoever (see Figure 29).

Note. Percentages of all expressed opinions (multiple answers allowed).

Figure 28. Effect of marking and publishing on learner motivation (pre-task)
Likewise, and without exception, marking was considered as a motivation for effort by many of the participants in all the groups pre-task. Similarly, but to a lesser extent, marking was also deemed to be a source of stress. However, in collaborative groups, the effect of marking appeared to translate into effort less markedly (50% for the ICT groups and 40% for the paper group) than in individual groups (82% and 70% respectively for ICT and paper groups), according to the pre-task responses. In addition, the ICT groups recorded higher mark-related stress levels than the paper groups (see Figure 30).
2.5.2 Change in attitude to task finality

When the same questions were asked post-task, the answers indicate the effort induced by either marking or publishing to be not as high as anticipated. This was especially the case for publishing which was found to have had no effect on 44% of the participating students and to be a source of pleasure for only 27% of them. Marking, on the other hand, eventually provided more pleasure and less stress (see Figure 31).

Figure 30. Main effect of marking on learner motivation according to group setting (pre-task)

Figure 31. Effect of marking and publishing on learner motivation (post-task)

Note. Percentages of all expressed opinions (multiple answers allowed).
An analysis of the responses from participants in those groups working in the different pedagogic setting shows a pattern quite distinct to that of their pre-task opinions. Only 30% of the individual/ICT still said their efforts were enhanced because of the task being published; and 29% of the collaborative/paper students felt stressed about it. Thus such students in these two groups were mostly found to be indifferent to these aspects. Further, the collaborative/ICT groups’ responses indicated that they did not find the task to be as pleasurable as expected. This was contrary to the two paper groups who reported they eventually liked having their work exhibited more than initially anticipated (see Figure 32).

![Graph showing the main effect of publishing on learner motivation according to group setting (post-task)](image)

Figure 32. Main effect of publishing on learner motivation according to group setting (post-task)

Unsurprisingly, marking was a source of effort for all groups, though particularly for the individual/ICT group (see Figure 33).
Regarding the specific patterns highlighted earlier in the pre-task questions, the above post-task results show that:

1) For the ICT groups (whether collaborative or individual) the pleasure induced by publishing was much less than anticipated. However, 30% of the students working in the individual/paper group eventually found the project pleasurable (compared with 10% of them pre-task);

2) The additional effort expended by the collaborative/paper group because of publication was limited (from an expected 53% pre-task to an actual 14% post-task); and

3) Concerning the effort induced by marking, no differences were found between students working individually and collaboratively, although the collaborative/paper group put in more effort than initially expected (from 40% to 50%). This is in contrast to the findings of the other groups.

2.5.3 Conclusions

In general the learners indicated pre-task that the prospect of their teacher marking their projects would affect their efforts, especially if they worked individually on the computer. The prospect of publishing appeared to have less impact although the participants’ responses did seem to suggest some learners would
be motivated to work harder. It would also make the experience more pleasurable for some, especially for those working in the collaborative/ICT groups.

However, post-task it was found that, as a whole, the learners’ experience was that marking was not as motivating as anticipated, at least in terms of effort, and respondents did not work as hard as they thought they would. Similarly publishing appeared to have had little impact on the students’ work, and if it encouraged them to put in more effort and even enjoy it more, the effect was only marginal.

However, while this was the general pattern, there were some differences according to the pedagogical setting of the different groups, in particular with regard to the paper groups. Publishing seemed to engender greater enjoyment than expected in the individual/paper group, a sign that, although performed under ‘normal’ conditions (this was the control group), the project nevertheless actioned some motivational levers. The reason for this might be that regular individual paper class work is usually kept personal and therefore has no social value. Further, it rarely involves gratification such as being shown to others. Similarly, the collaborative/paper students put in more effort due to the work being marked than was initially envisaged. This may be so because although marking is traditionally personal (hence their low expectations on collective marking), the students in this group eventually modified their representations and credited their work as deserving a good mark. Another explanation may be because of project design: specifically, there was personal responsibility and accountability for some of its sections (the writing subtask). Hence, although being a member of a group, there was still room for individual involvement.

Motivation is a phenomenon determined by a number of factors including, as shown above, the learner’s overall attitude and their response to such things as having their project marked and published. However, pleasure, effort or stress may not be the only likely outcome of learners’ motivation. In this research, it was also hypothesized that, in concert, the conditions in which they carried out their tasks, namely collaborative and/or computer-based conditions, would affect learner motivation, and that, in turn, this would also be evidenced by some ‘persistence’ of effort (Dörnyei & Otto, 1998). To investigate this further, evidence was sought in relation to how learners sustained their effort throughout the project in all four group settings. The outcomes are reported in Chapter 6 as part of the examination of the
learners' products. Examination of the learning processes in Chapter 5 also provides additional evidence regarding the above findings pertaining to motivation.

3. **Learners' Awareness of Content Domain**

This section deals with the analysis of the participants' awareness of content and knowledge about the English-speaking press pre- and post-task, as demonstrated on purpose-designed, identical tests (shown on page 71). As described in Chapter 3, the pre-test was administered to the participants at the onset of the project and the post-test immediately after its completion. Six months later a delayed post-test was also administered to the participants. This was devised in conjunction with the participating teachers, encompassing items similar to those included in the pre- and post-test (see page 73).

These tests were coded and examined statistically using a repeated measures ANOVA procedure. Results showed that the participants' post-test scores (11.5) were higher than their pre-test scores (6.6), and that such a difference was significant ($F = 85.711; p<0.0001$). Therefore, it would appear that the task allowed for the enhancement of content knowledge for all the participants. In addition, the delayed test scores (11.6) do not significantly differ from those of the post-test ($F = 1.779; p = 0.189$). Therefore these acquisitions can be considered as being fixed in time since a delayed test confirms these results. Figure 34 shows the delayed test scores (11.6) not to significantly differ from those of the post-test ($F = 1.779; p = 0.189$).
3.1 Effect of collaborative and ICT variables and interaction on content knowledge acquisition

In all four settings statistical scores are found to be significantly higher in the post-test compared with the pre-test. In addition, delayed post-test scores do not significantly differ from post-test scores (see Tables 15 & 16), suggesting long-term retention of such enhanced cultural awareness:

Table 15
Awareness tests results according to group setting

<table>
<thead>
<tr>
<th></th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Delayed post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual / paper</td>
<td>4</td>
<td>10.0</td>
<td>- -</td>
</tr>
<tr>
<td>Individual / ICT</td>
<td>8.8</td>
<td>14.1</td>
<td>14.0</td>
</tr>
<tr>
<td>Collaborative / paper</td>
<td>5.8</td>
<td>11.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Collaborative / ICT</td>
<td>6.7</td>
<td>11.1</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Note. Teacher 1's delayed post-tests could not be collected so there is no value for the Individual/paper group. In addition, Teacher 1's collaborative/ICT group delayed post-test scores are missing from the total.
Table 16
Repeated-measures ANOVA (Analysis of Variance) on awareness tests

<table>
<thead>
<tr>
<th>Measure:</th>
<th>MEASURE_1</th>
<th>Tests of Within-Subjects Contrasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>Source</td>
<td>Awareness tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2 vs. Level 3</td>
</tr>
<tr>
<td>indiv_ict</td>
<td>Error</td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td>(awareness)</td>
<td>Level 2 vs. Level 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2 vs. Level 3</td>
</tr>
<tr>
<td>coll_pap</td>
<td>Error</td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td>(awareness)</td>
<td>Level 2 vs. Level 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2 vs. Level 3</td>
</tr>
<tr>
<td>coll_ict</td>
<td>Error</td>
<td>Level 1 vs. Level 2</td>
</tr>
<tr>
<td></td>
<td>(awareness)</td>
<td>Level 2 vs. Level 3</td>
</tr>
</tbody>
</table>

Therefore, it would seem that participation in the project was beneficial for the students with regard to increasing their content knowledge. Further, this was true, irrespective of their pedagogic setting.

However, a statistical analysis (t-test) performed on the pre-tests score further shows that:

1) The initial differences between the various group settings are significant. A t-test shows that the ICT groups score higher than the paper groups at the onset (t = -2.95; p = 0.004).

2) There is an interaction between the ICT and the collaborative variables, which is determined by way of an analysis of regression (F = 6.82; p = 0.011). This indicates that students in the ICT groups score even higher when working in an individual setting.

On the post-test scores, however, variations as determined by a t-test between ICT and paper groups are not significant (t = -1.555; p = 0.124). This means that
while the students initially achieved different scores, the level of content awareness attained by the learners after the project is comparable. Despite this, the interaction effect between the ICT and the collaborative variables remains (F = 10.25; p = 0.002). This demonstrates that: a) regardless of the group setting, the project was significantly beneficial in terms of content awareness gain; and, b) it was more beneficial for learners working on the computer individually.

Compared to the others, learners’ content acquisitions in ICT settings also seem better fixed in time, as shown by a t-test on the comparison of the delayed post-test scores (t = -2.12; p = 0.04). Further, individual/ICT results in the delayed post-test show that such learners recall more than the other groups in the long term (t = -2.858; p = 0.006). This is unlike the collaborative/paper group, which is found not to recall as much as the other groups a few months after the completion of the project (t = 2.121; p = 0.04).

The developmental patterns for the various groups’ content awareness are presented in Figure 35:

![Score variation in pre- and post-awareness tests results according to group setting](image)

Note. Teacher 1’s delayed post-tests could not be collected so there is no value for the Individual/paper group. In addition, Teacher 1’s collaborative/ICT group delayed post-test scores are missing from the total.

Figure 35. Score variation in pre- and post-awareness tests results according to group setting

In order to further explore these findings, an analysis of regression was performed. The aim was to determine the impact of the various variables on the
results obtained over time. For the set of items tested, the statistical treatment shows that the score in the post-test may be partly determined by the score in the pre-test (Standardized estimate = 0.442, that is 44%) and the collaborative variable (respectively t = 3.698; p<0.001 and t = 1.602; p = 0.114), as Figure 36 illustrates, with a tendency towards the negative impact of collaborative work on the post-test. In other words, with identical pre-test levels, students tend to obtain lower scores in collaborative groups than those in individual settings (an estimated -1.1 point score).

Figure 36. Awareness tests predictability

This is further evidenced by the significant positive impact of the individual/ICT setting for the three reference items on the post-test score (t = -2.336; p = 0.022), though this result could not be confirmed on the delayed post-test due to the lack of the individual/paper data. Thus confirmatory evidence is provided that this setting may be regarded as most conducive of the acquisition of content knowledge.

On this basis it could be argued that collaboration does not appear to facilitate the acquisition of knowledge about the English-speaking press; and that individual work seems better suited for this purpose. This may be because the acquisition of declarative knowledge is arguably a more personal process – one that does not rely so much on negotiation or interaction. Further it may be that acquisition of content knowledge requires specific and individual attention from learners. Although this is supposition at this point, the issue of concentration was raised by some participants in the questionnaires, particularly as an explanation for why they encountered
difficulties. Further evidence for this is also apparent in the videos of collaborative groups as they worked. It showed that the groups working within this setting sometimes lacked focus. Another explanation could be that some individuals employ personal strategies (e.g., mnemonic techniques) to select facts they need (or deem worthy of) going into long-term memory. Because this process is not easily shared, collaboration could also be a hindrance.

Yet it remains that for the most part that variation in the results can neither be predicted from the initial score nor from any specific setting. This tends to suggest that the task itself is an important variable contributing to content acquisition.

3.2 Effect of language proficiency

No statistical variation could be found between the low-achievers and the rest of the cohort in terms of acquisition of content knowledge on the post-test. Although low-achievers rated significantly lower than the others in the pre-test means ($t = 2.576; p = 0.012$), and still lower in the post-tests, they are no longer found to be statistically different ($t = 1.775, p = 0.08$). This is confirmed by a repeated measures ANOVA which shows a significant progression between pre- and post-tests for those learners ($F = 13.418; p = 0.015$), while no difference is observed between the post- and the delayed tests ($F = 1.135; p = 0.335$).

Therefore it would seem that for low-achieving learners, this project favoured the acquisition of content knowledge to the same extent as it did for the remainder of the participants (see Figure 37).
4. Learners’ Self-Evaluation of Task Completion

Finally, to complete this overview of learner factors and the effect the project might have had on them, an examination is undertaken of the learners’ evaluation of their own performance.

4.1 Difficulties in completing the task

In the collaborative groups, half the participants experienced difficulties and no difference could be observed as a result of ICT use. However, the situation differs in individual groups where results are contrasted (see Figure 38).
Figure 38. Difficulties according to group setting

In the individual/paper group, only two learners (out of 10) acknowledged experiencing problems compared to nine (out of 12) doing so in the individual/ICT group. Teacher 3 was responsible for this latter group, so, to eliminate a possible teacher effect, this teacher’s collaborative/ICT group was examined. It was alleged special conditions might have affected the manner in which the project was implemented in this school, making it more difficult for these particular students. Results, however, do not support this hypothesis (see Figure 39):

Figure 39. Difficulties in Teacher 3’s A and B groups

Further, both of Teacher 3’s groups were taught at the same time in the same computer lab, making it unlikely that other variables could interfere with the results. Hence, it is indeed the conjunction of the individual and ICT variables that has led to such a result.

126
As it happened, time constraints seem to have placed a heavy burden on this particular group, though all groups do mention time management as the main source of difficulty. However, for this particular group who experienced more difficulties than others, technical problems were also more prevalent. More detailed results compare the reasons students identified as the main sources of difficulty (see Figure 40).

![The main source of difficulty I encountered was...](post-Q_q11)

Figure 40. Main source of learner difficulty according to group setting

Bearing in mind that learners in the individual/ICT setting also rated highest post-task on the levels of effort and stress (as reported on pages 116 and 117) as a result of their work being marked and published, evidence is sought and presented in Chapter 6 (on the products of the learners' activity) showing whether these students successfully overcame their difficulties and if the effort and stress were conducive to better results.

Finally, and somewhat surprisingly, the findings also show that lack of interest was the main problem for some students in the collaborative groups, but this is never cited as the primary source of difficulty by those in the individual groups.

4.2 Self-assessment of performance on task

Results in Figures 41 to 43 indicate that learners tended generally to be happy with their productions as only a few negative evaluations were actually recorded. Though learners in the individual/ICT group were not as positive as the remainder,
many in the other groups did find they produced a better quality English (see Figure 41).

For this project, the quality of my English was...
(post-Q q10a)

Figure 41. Perceived effect of project on language competence, in comparison with standard class work

In addition, most students felt they succeeded in effectively addressing the creative challenges of the project. This is particularly true in the collaborative/ICT groups whereby this effect appears less markedly for the individual/paper group (see Figure 42).

For this project, the quality of my graphic illustrations and design was...
(post-Q q10b)

Figure 42. Perceived effect of project on creative competence, in comparison with standard class work
Finally, their self-assessment concerned thoughts on how they had managed to comply with the norms and rules of the genre. In this regard, the individual/paper and collaborative/ICT group seem less satisfied than the other two. The learners in the individual/ICT group (see Figure 43), however, appear to be particularly happy with their performance for this aspect of competence (which can be defined as instrumental).

![Bar chart showing perceived effect of project on instrumental competence, in comparison with standard class work.](image)

Figure 43. Perceived effect of project on instrumental competence, in comparison with standard class work

Therefore, it can be said that most learners reported satisfaction about the strategic competences they demonstrated on the project, although such satisfaction is less prevalent among learners working in individual settings.

4.3 Goal achievement

It would seem that learners generally felt they had achieved at least part of what they had set out to accomplish for the project (see Figure 44). It should be noted that those in the individual/ICT group are the most positive about their global performance, though the reminder should be that they also experienced the most difficulties (see previous section) and were not as satisfied with their language production. It could be argued that overcoming those difficulties may have contributed to such sense of achievement.
Regardless of the group setting, one third of the students reported failing to achieve at least some of their goals (see Figure 45).

Figure 45. Negative learners’ perception of own achievement

Overall, the reasons the students have for their sense of achievement, or lack thereof, may be exemplified by the following quotes:

ACHIEVEMENT

- I did not think I could make it starting from scratch.
- I didn’t think I would be able to make a Website on my own.
FAILURE

- We spent too much time on preparatory tasks.
- We did not get on (with partner)

When asked whether they would happily do the same kind of work again (post-task questionnaire, question 12), all groups answered positively, with percentages ranging from 80% to 92%. The suggestions for improvement they formulate, based on their experience, would pertain to the following areas:

CONTENT: Students should be able to choose the task content. Opportunities for interaction with professionals should be offered.

TASK: The expected finality of the project should be made explicit to the learners at its commencement and minimal preliminary tasks expected.

PROCESS: Larger group size (>2) should be made possible. In addition, choosing the right partner(s) is seen as essential and should be encouraged.

LANGUAGE: Projects such as this are best offered when the students' command of English is sufficiently competent.

Finally, it should be noted there to be no particular suggestions with regard to the deploying of technology as such.
CHAPTER 5
FINDINGS: THE LEARNING PROCESS

This chapter presents the findings related to the analysis of the learning process data. This includes those data obtained from the videos of the students interacting as they undertook the project, as well as that collected as they performed the two preliminary tasks. The data highlight the opportunities these tasks provided for both top-down and bottom-up processing by the learners, including low-achievers.

1. On-Task Activity

The video data provided useful insights into the way the dyads managed the task. In particular, they showed how the participants dealt with the introduction of collaboration and ICT in practical terms, with a particular focus on low-achieving students.

The student on-task activity was analyzed in such a way as to identify key episodes that illustrated the changes brought about by the project and the specific conditions under which it was carried out. Being case studies, the following results cannot be generalized but they nonetheless illuminate the strategies some learners used to cope with their difficulties, and how they sometimes managed the specific demands of collaborating on a computer task. A particular interest was taken with regard to learners' autonomy as it was one area they had identified positively post-task in ICT settings (see for example page 108).

1.1 Working independently

The various settings influenced the students' ability to work independently and this included when they worked in an ICT setting and when they worked collaboratively; it also included the impact of teacher intervention during these times. For participants with only a minimum mastery of the technology required for the task, it appeared that ICT favoured autonomy. For instance, resources were just a click away with numerous models to choose from. In contrast, the paper groups
relied entirely on the teacher to provide the press materials as these are not commonly found in France.

However, a complete lack of technical knowledge or insufficient experience with using computers in the ICT groups (or even unreliable technical environment, as it happened), resulted in the students often requesting technical help from their teacher and, as a consequence, spending less time on language content. Overall however, it seemed that those students working in an ICT setting had enhanced opportunities to work independently. This occurred even though computers come with their own operating modes and procedures, the learners needing to adjust accordingly. This conclusion supports the claims by Bonneville et al. (2008) that the computer ought to be considered as a “quasi-actor” in the learning process.

Collaboration also appeared to have an impact on whether the learners could work independently of the teacher. For example, because learners working in dyads could complement one another in terms of technical and linguistic skills, there was more opportunity for them to function independently of the teacher. However, if neither of the pair possessed an adequate level of linguistic skill, and/or if the pair could not collaborate in a purposeful way, a serious challenge was posed to the dyads’ ability to work autonomously.

It should be noted that, in the main, the participants were primarily active in solving their own problems, either within the dyad or, when it failed, between dyads. However, even for those learners who did not require the teacher’s technical or linguistic support, some requested teacher help, albeit for other purposes. In the following excerpt, two learners called on the teacher for him to read and check what they had written. The teacher, possibly anticipating problems, decided to help them get started with the next question. Illustrative data from Dyad 8 (collaborative/ICT with Teacher 3) in Phase 1 follow:

Std. 59: Monsieur !

Sir!

T 3: Yes? *(He reads what is on the screen)*

Std 59 : -
T 3: That's fine, that's wonderful, very good. So just make sure that you have saved your work. *(He takes the mouse from the student)*. Now I don't think you need this anymore, let's close this now *(closing one window from the screen)*... Ok... I think we don't need this... *(He continues, closing eight windows in total)*. Let's go back to the main menu. Where is it? To the main activities and see what's next for you *(seven more clicks are needed so that the Webquest homepage is brought back to the screen)*. You have to open up both *(talking about the preliminary tasks)*. This is the article and this is the answer sheet, you do this! It's coming *(page loading)*. So now you read the article and key in your answers. Alright?

Std 59: -

Std 71: (She nods)

Even when teachers initiated interactions to support their students, perhaps because they deemed it useful to do so for the completion of the task, they did not necessarily impede their students' autonomy. Rather, as Bonneville et al. (2008) argue, they created a situation of punctual interdependency which may be motivated by time constraints or work standards.

Evidence from the data showed there to be more instances of teacher-learner individualized interactions in ICT than in paper settings. These interactions were also longer in ICT classes. This supports the findings of Campanale et al. (2008).

In contrast, in classes using a paper-based pedagogy, it seemed that teachers would resort more often to collective addresses to the students (rather than the individualized approach which occurred in the ICT settings). This meant that the class seemed more teacher-centred. However, clarification requests were also more easily expressed, especially regarding the task requirements, which may have led to a better task redefinition.

1.2 Learners' actions

From the available data it was possible to examine learners' actions, at an individual and dyadic level, including some language related episodes. Unfortunately, because the data collection was undertaken in real classrooms, the quality of the recordings was limited, affecting the extent of the examples available. However, long-term observations and field notes support the extent to which this evidence was generalizable. Similarly, the screen captures collected provided useful information about how learners navigated the different applications and how much
time they devoted to these activities. Of particular interest were the videos of dyadic work in ICT settings, especially that of the low-achieving students.

1.2.1 Collaborative work in the ICT and paper based classes

An examination of the learner actions that occurred in Teacher 2’s collaborative/paper class and in the collaborative/ICT classes, suggested that dyads in the paper setting were more focused and did not display any of the ‘fuzziness’ observed in the ICT groups. Further, although collaboration occurred in both settings, learners in the paper group moved around seeking advice from their fellow students. Conversely, computer room students tended to stay put at the computer and call out to one another instead. This resulted in the ICT class being much noisier as well as being often disrupted by technical problems.

From the video data and observation notes it was apparent that, in the ICT setting, getting started took significantly more time for the learner. Computers had to be turned on, then the participants needed to log on, the Webpage accessed and related documents retrieved. For most of the participants this would take up to five minutes, but only if no problems were encountered. However, when there were problems, this could be much longer - up to 12 minutes in total.

Among the many technical problems that contributed to a delayed start for the ICT learner groups were the following:

- Login problems which included loss of password, login name unknown, and system being down.
- Computer bugs such as slow display of pages and rebooting required.
- Data loss caused by unsaved material or the computer crashing.
- Data access problems including school firewalls barring some news Websites, peer login that did not allow data to be retrieved or saved from another account and spelling mistakes on URLs.

As a consequence of such problems the teacher was often under pressure and had to make many decisions on the run. For the learners these disruptions, most of which happened at the beginning of the lessons, led to a considerable period of time off task. In fact, for the 10 dyads observed in a normal 50-minute class period,
between 10% and 20% of the time was spent on activities not directly related to the task.

Another observation, also evident in the video data, was that the interaction between the dyads was almost exclusively in French (L1) (however, this was also true in the paper setting). This may be, at least in part, a result of the actions of the teachers who also rarely spoke in English. This was particularly the case for Teacher 1 in her ICT class (though she spoke English in her paper class) and Teacher 2 in both her collaborative classes. Teacher 3 however did maintain a moderate level of English in his ICT classroom. However, regardless of the use of L1 or L2 by the teacher, the language used by the learners was their own common L1. When they spoke English (L2), it was either to read a sentence appearing on the screen, or to question one another on the meaning of a word. This paralleled the findings of Oliver & Tognini (2010) who found that learners tended to revert to L1 when engaged in negotiation moves and task management in contexts where English was taught as a foreign language.

In terms of the interaction between the participants engaged in the ICT-based task, the video data showed that learners working on the same computer rarely face one another and as a result seldom talk to one another. This is quite different from observations made in the collaborative paper class. However, in the ICT class the pairs would interact more frequently with one another when they encountered technical difficulties. At such times learners would not hesitate to call others for help and move around from one computer to the next to give assistance. The consequence of this, as indicated before, was a higher noise level in the ICT classroom.

By contrast students in the paper setting class, especially in Phase 2 of the project when they were creating their own product, were more ‘hands-on’ and interacted less often. Many of their verbal exchanges were to express their worries or concerns about the layout and the aesthetic aspects of the work.

Such comments as these were rarely if ever heard or observed in the ICT classes where learners’ language mostly concerned questions to the teacher or their peers, most often pertaining to the correctness of the language or to the technical difficulties encountered. A typical example concerned the data from Dyad 2 (collaborative/ICT with Teacher 1) in Phase 2.
Std. 11: Madame!

Madam!

(Teacher 1 arrives)

Std 11: On va où pour écrire nos textes? On écrit directement là?

Where do we go to write our texts? Do we write here directly?
(meaning on the Dreamweaver interface)

T 1: Oui c’est bien, faut que tu fasses le tableau pour les écrire...

Yes it’s good, you have to make the table so you can write them...
(meaning in Dreamweaver frames)

Std 13: On pourrait utiliser Word?

Could we use Word?

T 1: Oui si tu veux, tu veux faire un copier-coller, c’est ça?... Oui c’est bien aussi, vas-y.

Yes if you want, you want to cut and paste, right?... Yes that’s fine too, go ahead.

(Student 13 starts dictating to his peer an article written on a piece of paper. Dictation lasts 13 minutes).

1.2.2 Low-achievers working on the project

While higher achieving students seemed not to take the task as seriously at the onset, contrarily the low-achievers were found to be somehow empowered by it. Further, despite their deficiencies in English, such learners could sometimes prove more strategic than their more able partner.

Dyad 4 exemplified this phenomenon as its two students members were heterogeneously matched, their language proficiency being 15 score points apart on the placement test. This is confirmed by Teacher 2’s evaluation record which showed Student 49 obtained a grade C and Student 53 a B+ in their overall class evaluations. This pair was closely observed during the first phase of the project wherein students had to gather information about the English-speaking press and to analyze texts on the net. The behaviour of the low-achiever (Student 49) can be characterized as being focused throughout despite the constant, though vain, tentative attempts of the high-achiever (Student 53) to crack jokes and to distract her partner. Initially the pair was
busy opening up documents, but then they experienced problems with the copy and paste function. As this was the first period on the project, the actions of this dyad were quite typical of the class as a whole: many students experienced technical difficulties which made the groups somewhat chaotic. After an initial lapse of time, Student 53 decided to become more serious about the task, as the following episode shows, beginning 10 minutes after class commencement.

Data from Dyad 4 (collaborative/ICT with Teacher 2) in Phase 1.

Std. 53: Pourquoi c’est toujours toi qu’a la souris là?

Why is it you always get the mouse? (She looks unhappy)

Std. 49: Tiens la voilà.

There, you have it.

Std. 53: Allez on y va. Donc, “What is the circulation?”

Ok, let’s go. So, “What is the circulation?”

It can be seen that initially Student 53 ignored the problems she and her partner encountered. In fact, it appears that she left most of the responsibility for the task to her ‘lower achieving’ partner. However, she finally took over by getting control of the mouse and signifies this by stating, “Ok, let’s go.”

The completion of the first half-hour saw the dyad working well and at this point Student 49 again took possession of the mouse and the keyboard. Unlike at the lesson’s commencement, student 53 appeared comfortable with this change and happily provided directions while Student 49 obeyed diligently.

Std. 53: Qu’est-ce tu fais?

What are you doing?

Std. 49: On prend les quatre premiers?

We use the first four? (of the links to news Websites provided)

Yeah. No, I wanted to have a look at the Times. Wait.

Std 49: - (she scrolls down using the mouse)

Std. 53: Stop. Doucement.
Stop. Slowly.

Std 49: -

Student 53’s control is also evidenced through her use of language as the following excerpt shows:

Std. 49: C’est quoi ‘circulation’?
 What’s ‘circulation’? (In English)

Std. 53: Ben regarde là, les chiffres, combien de ‘newspapers’...
 Look here, see the figures, how many ‘newspapers’ (in English)...?

Std. 49: … de journaux sont vendus par jour?
 Newspapers are sold every day?

Std 53: Voilà!
 That’s it!

The Teacher is just passing by, so Student 49 asks:

Std 49: Madame, c’est quoi ‘circulation’?
 Madame, what’s ‘circulation’? (in English)

T 2: Ces chiffres, là, qu’on vous donne, c’est quoi à ton avis?
 Those figures given here, what are they, do you think?

Std 49: Le tirage?
 Circulation?

T 2: Ben voilà, t’as compris, t’as répondu à ta question.
 There you go, you answered your question.

It can be seen how the high-achiever in the dyad regained leadership, helping the other make sense of the task. Despite this, the low-achiever only seemed reassured once the teacher had confirmed the meaning of the word. Thus it would seem that, although she did not confront her partner at this point, she did not fully trust her.

However, as the task proceeded, student 49 became more confident and did begin to challenge her partner:
The main articles are “principally”...

\(\text{The main articles are principally... (She dictates)} \)

Are quoi?

\(\text{Are what?} \)

Qu’ils sont principalement au début.

\(\text{They are mainly at the beginning.} \)

Ça veut rien dire.

\(\text{It makes no sense.} \)

Yes it does.

Au début de quoi? On est sur la première page, c’est normal!

\(\text{Beginning of what? We’re on the first page, of course!} \)

So yes, the main articles are at the beginning.

Oui mais bon c’est pas ça, c’est pour dire que les articles principaux ils mettent les titres en plus gros, ils sont plus développés...

Yes but it’s not what they mean. They mean the main articles get bigger headlines, they’re more developed...

Ok, bon, ben more... je sais pas... ‘developed’?

\(\text{Ok then, well more... I don’t know... ‘developed’? (In English)} \)

Deux p, y’a pas deux p? Vas-y mets deux p pour voir.

\(\text{Two p, isn’t there two p? Go and type two p just to see.} \)

(discussing the spelling of ‘developed’)

Mais non, y’a pas de rouge, y’a de faute.

\(\text{Of course not, there’s no red, there’s no mistake. (She points to the screen showing the automatic spell-check).} \)

Therefore, despite her lower proficiency level, and as her confidence developed, the low-achiever student appeared more assertive. She was able to make
sense of the task requiring analysis of the specifics of feature articles; she worked in strategic ways when she was uncertain of how to spell “developed”, making clever use of the automatic spell-check.

The screen captured data for this dyad showed they used only the two applications required for the task (Word and Internet Explorer), and did not make any attempt to use the in-built tools that may have been useful. Even though they struggled to understand “expect”, they did not use the online dictionary. Similarly they did not use the calculator when trying to calculate the ratio of newspapers sold per capita in Britain. The capture also showed their navigation and screens to be mostly static and their progression linear. Generally this was observed in all screen captures.

2 The Task and the Cognitive Load

In the first phase of the project, learners were to analyze and collect information. Because this was the kind of work they would usually perform in a ‘normal’ class, it was particularly relevant to examine the changes brought about by the collaborative use of the computer. Again a particular focus of this examination was the impact this had on low-achieving learners.

The students’ productions in Phase 1 (preliminary tasks) constituted the database for the evaluation of language learning processing. There were two types:

- The first preliminary task consisted of having the students make a series of observations and comparisons between various newspapers (in print or online depending on the groups setting) and different types of articles. This type of work involved information research and analysis (Appendix C).

- The second pre-task was reading a comprehension grid on a press article dealing with the specific aspects of the English-speaking press. It included directing their focus to the complex expressions used in the various standpoints. This was an important part of implicit information that learners needed to grasp (Appendix D).

Following the scoring procedure described in Chapter 3, the collated results of both preliminary tasks in the various groups are as follows:
Table 17
Preliminary task scores according to group setting

<table>
<thead>
<tr>
<th>Preliminary tasks</th>
<th>Individual/paper</th>
<th>Individual/ICT</th>
<th>Collaborative/paper</th>
<th>Collaborative/ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average score</td>
<td>- -</td>
<td>72.8</td>
<td>82.7</td>
<td>75.5</td>
</tr>
</tbody>
</table>

Note. Teacher 1's preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1's learners.

The results for this aspect of the research showed that students who undertook the task in the collaborative/paper group setting obtained the best results in total for this phase of the project, although there was only a tendency to statistical significance \((t = -1.817; p = 0.075)\). However, regarding the learning process, this figure does not divulge how the more difficult aspects of these preliminary tasks were dealt with, specifically those aspects requiring higher order processing.

Therefore, the difficulty of the various questions was assessed and classified \((A, B, C, D)\) by way of the scoring procedure described in Chapter 3 (see page 75). By doing this an examination of how students performed in the more difficult questions requiring advanced knowledge processing could be undertaken. Thus, each question was graded according to its cognitive difficulty (see Figure 46).

![Figure 46. Classification of the 30-question preliminary tasks according to cognitive difficulty](image_url)
Results were then categorized by question type for the various groups (see Figure 47. These results accord with Spiro's (1990) model which contends that cognitive and not solely linguistic difficulty comes into play in the processing of information. In fact, the results showed that success in addressing the requirements of the preliminary tasks largely depended on the cognitive rather than purely linguistic difficulty pertaining to the task. When the cognitive load was high, learners were less likely to address the demands of the task satisfactorily. This pertains regardless of the group setting.

Note. Teacher 1’s preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1’s learners.

Figure 47. Preliminary tasks results according to knowledge type

This examination of the data by question type helps refine the tendency evidenced earlier concerning the better results of the collaborative/paper group. The above figure shows this tendency to manifest itself in the area of less cognitively demanding questions (types C and D) - the acquisition of what Spiro calls basic knowledge. This difference is statistically significant (respectively \(t = -3.826; p<0.0001 \) and \(t = -5.155; p<0.0001 \)). In such situations, the required information was readily available in the text and the task did not require the activation of the student’s prior cultural knowledge other than the lexical and syntactic knowledge necessary for surface comprehension (Gaonac'h & Fayol, 2003).
However, although the collaborative/paper group outranked the others for the bottom-up (basic) operations, students from this group did not appear to perform any better for types A and B questions, as relevant statistical analyses (in Table 18) show:

Table 18
T-test for the various question types of the preliminary tasks (collaborative/paper variable)

<table>
<thead>
<tr>
<th>Qtype</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>coll_pap</td>
<td>15</td>
<td>18,467</td>
<td>6,5669</td>
<td>1,6956</td>
</tr>
<tr>
<td></td>
<td>non_coll_pap</td>
<td>36</td>
<td>19,306</td>
<td>7,2696</td>
<td>1,2116</td>
</tr>
<tr>
<td>B</td>
<td>coll_pap</td>
<td>15</td>
<td>17,533</td>
<td>7,9090</td>
<td>2,0421</td>
</tr>
<tr>
<td></td>
<td>non_coll_pap</td>
<td>38</td>
<td>16,368</td>
<td>7,0689</td>
<td>1,1467</td>
</tr>
<tr>
<td>C</td>
<td>coll_pap</td>
<td>15</td>
<td>27,467</td>
<td>3,2264</td>
<td>0,8330</td>
</tr>
<tr>
<td></td>
<td>non_coll_pap</td>
<td>36</td>
<td>22,694</td>
<td>4,3479</td>
<td>0,7246</td>
</tr>
<tr>
<td>D</td>
<td>coll_pap</td>
<td>15</td>
<td>19,200</td>
<td>1,0823</td>
<td>0,2795</td>
</tr>
</tbody>
</table>

Independent Samples Test

<table>
<thead>
<tr>
<th>Qtype</th>
<th>Test for Equality of Variances</th>
<th>Levene's Test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>A</td>
<td>.292</td>
<td>,591</td>
</tr>
<tr>
<td>B</td>
<td>.000</td>
<td>,987</td>
</tr>
<tr>
<td>C</td>
<td>.528</td>
<td>,471</td>
</tr>
<tr>
<td>D</td>
<td>7,256</td>
<td>,010</td>
</tr>
</tbody>
</table>

145
Independent Samples Test

<table>
<thead>
<tr>
<th>Qtype</th>
<th>Equal variances assumed</th>
<th>Equal variances not assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>QtypeA</td>
<td>-3.5311</td>
<td>5.2088</td>
</tr>
<tr>
<td></td>
<td>-3.4237</td>
<td>5.1015</td>
</tr>
<tr>
<td>QtypeB</td>
<td>-5.6394</td>
<td>3.3095</td>
</tr>
<tr>
<td></td>
<td>-6.0058</td>
<td>3.6760</td>
</tr>
<tr>
<td>QtypeC</td>
<td>-7.2791</td>
<td>-2.2654</td>
</tr>
<tr>
<td></td>
<td>-7.0134</td>
<td>-2.5311</td>
</tr>
<tr>
<td>QtypeD</td>
<td>-4.4860</td>
<td>-1.9696</td>
</tr>
<tr>
<td></td>
<td>-4.1846</td>
<td>-2.2710</td>
</tr>
</tbody>
</table>

For those questions with a high cognitive load (Spiro’s ‘advanced knowledge’), the information to be processed is partly located in the student’s memory in the form of schemata or scripts (Anderson, 1976, 1980, 1996; Mason, 1992). Therefore the learner needs to activate more than purely linguistic background knowledge, such as personal knowledge of the world, to answer a question. Unsurprisingly, these questions are not as satisfactorily answered as are the others (see Figure 47).

2.1 Effect of ICT variable

Interestingly, for basic knowledge, the ICT setting seemed to induce significantly lower performances than those obtained in the paper groups. The effect of the setting was notable in the following results:
Table 19

Pre/iminmy task results for basic knowledge processing (ICT variable)

<table>
<thead>
<tr>
<th>Questions types</th>
<th>ICT setting</th>
<th>Paper setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>C /36</td>
<td>22.7 (63%)</td>
<td>27.5 (76.4%)</td>
</tr>
<tr>
<td>D /20</td>
<td>16 (80%)</td>
<td>19.2 (96%)</td>
</tr>
</tbody>
</table>

Note. Teacher 1's preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1's learners.

Because data were lacking for the individual/paper group a statistical comparison was made between the collaborative groups only. A t-test shows a statistically significant difference between the ICT and the paper groups for both question types C (t = 4.274; p<0.001) and D (t = 5.154; p<0.001), i.e., basic knowledge questions. Students working on paper performed significantly better (27.5 and 19.2 for C and D question types respectively) than those working with a computer (23 and 15.9 respectively). Such statistical results were further confirmed if Teacher 2's two collaborative groups (one paper-based and the other ICT-based) are taken into account only, and Teacher 3's groups results being filtered out so as to eliminate a possible Teacher effect.

One hypothesis emerging from these results was that managing and mastering the basics of English language is more easily done by paper work methods which are the manner in which learners have acquired the language in lower grade classes. Another explanation may be that these preliminary tasks, which required extensive browsing and cross-referencing, going back and forth from one page to another, was more easily performed with pen and paper than on screen.

However, this effect is limited to basic knowledge questions and does not apply to advanced knowledge. As the cognitive difficulty grows, the results no longer differ significantly from one group to the other. For question types A and B, there are no significant differences in the scores between the two settings (see Table

8 In this case it is also significant for both question types, C (t = 4,262; p<0.001) and D (t = 4,962; p<0.001).
This is confirmed by complementary analyses on collaborative groups and Teacher 2’s groups only.

Table 20
Preliminary tasks results for advanced knowledge processing (ICT variable)

<table>
<thead>
<tr>
<th>Questions types</th>
<th>ICT setting</th>
<th>Paper setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A /50</td>
<td>19.3 (38.6%)</td>
<td>18.5 (37%)</td>
</tr>
<tr>
<td>B /34</td>
<td>16.4 (48.2%)</td>
<td>17.5 (51.5%)</td>
</tr>
</tbody>
</table>

Note. Teacher 1’s preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1’s learners.

Learners’ performances in advanced knowledge processing were similarly low in all groups; therefore, the research fails to provide any supporting evidence for the positive effect of the ICT variable.

2.2 Effect of the collaboration variable

When basic and advanced knowledge processing was considered, the collaboration variable had no detectable effect on the performance of the pre-tasks, even though it was noticeable that learners working individually scored consistently lower than those who worked collaboratively. Results for this variable are depicted in Tables 21 & 22:

Table 21
Preliminary tasks results for basic knowledge processing (collaboration variable)

<table>
<thead>
<tr>
<th>Questions types</th>
<th>Collaborative setting</th>
<th>Individual setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>C /36</td>
<td>24.5 (68%)</td>
<td>21.2 (58.9%)</td>
</tr>
<tr>
<td>D /20</td>
<td>17 (85%)</td>
<td>16.5 (82.5%)</td>
</tr>
</tbody>
</table>

Note. Teacher 1’s preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1’s learners.
Table 22
Preliminary tasks results for advanced knowledge processing (collaboration variable)

<table>
<thead>
<tr>
<th>Questions types</th>
<th>Collaborative setting</th>
<th>Individual setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A /50</td>
<td>19.2 (38.4%)</td>
<td>18 (36%)</td>
</tr>
<tr>
<td>B /34</td>
<td>17.2 (50.6%)</td>
<td>13.6 (40%)</td>
</tr>
</tbody>
</table>

Note. Teacher 1's preliminary tasks productions could not be collected; therefore no value for the individual/paper group and the collaborative/ICT group are reported for Teacher 1's learners.

However, because of the missing data for Teacher 1, and hence lack of available data for the individual/paper group, the results from Teacher 3's A and B groups were further examined as he taught both collaborative/ICT and individual/ICT groups. Related statistical treatment does not outline any significant difference in learner achievement regardless of the level of cognitive difficulty. It should be noted however there was a tendency towards a better performance by the collaborative group for higher-order question types. The means obtained by Teacher 3's collaborative/ICT group for A and B type questions (respectively 23.5 and 20) compares favourably with those of his individual/ICT group (18 and 13.6). This tendency was illustrated by the t-test results for type A ($t = -1.463; p = .163$) and type B ($t = -1.919; p = .071$) questions. Hence, while the positive impact of collaboration was not demonstrated at this stage, results suggested further investigation in this direction to be necessary, particularly with regard to advanced knowledge processing.

2.3 **Effect of group setting**

A statistical analysis was performed comparing the means of the focus groups (collaborative and working on a computer) with that of the control groups (here the collaborative/paper and individual/ICT for the lack of individual/paper data). The means of the focus groups as a whole are higher than those for types A and B, and lower for C and D. This supports the notion of collaboration being paired with ICT use as being beneficial for higher order processing, and detrimental to basic language manipulation. Yet, the benefits for advanced knowledge processing were not shown statistically, whereas the negative impact for basic knowledge manipulation on type
C \((t = 2.117; p = 0.039) \) and D \((t = 4.133; p < 0.001) \) was significant, as shown by a t-test.

When the same statistical treatment was performed for the individual/ICT control group, no significant difference with learners from other groups was detected. This suggested that collaboration may be the determining, but negative factor for basic knowledge processing. However, this contention was not supported by the results found when comparing the means of the collaborative groups with those in individual settings (i.e., collaborative and individual groups do not perform differently).

The pattern that seems to emerge from these results is that collaboration or ICT, used separately, have no effect on the results; however, when combined they impact negatively on basic knowledge acquisition. Therefore, tasks that require only basic knowledge processes, such as scanning to select or skimming to identify words in a text, should preferably be performed either in a collaborative or ICT setting, but not both at the same time. It may be that simple operations such as these are highly operationalized in the more "traditional" situation of individual "pen and paper" work. The challenge of simultaneously dealing with another instrument (the computer) and another individual (a peer) modifies the learner's ability to operate in this way. Thus if no significant effect was found on advanced knowledge, it may be because learners are not proficient enough in this area to have developed an operational knowledge from previous learning experience.

2.4 **Effect of language proficiency**

The results suggested that language proficiency has an effect on preliminary tasks completion as global results show a significant difference \((t = 2.06; p = 0.045)\). Low-achievers obtained an overall mean of 69.9, whereas the others obtained a mean of 79.3. When these results were examined by question type, a tendency towards significance appears for the higher-order cognitive processes (A and B question types) while lower-order processes (C and D) are achieved similarly (see Table 23):
Table 23
T-test for language proficiency (question type variable)

<table>
<thead>
<tr>
<th>Group Statistics</th>
<th>low-achiev</th>
<th>non low-achiev</th>
<th>QtypeA</th>
<th>low-achiev</th>
<th>non low-achiev</th>
<th>QtypeB</th>
<th>low-achiev</th>
<th>non low-achiev</th>
<th>QtypeC</th>
<th>low-achiev</th>
<th>non low-achiev</th>
<th>QtypeD</th>
<th>low-achiev</th>
<th>non low-achiev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error Mean</td>
<td>N</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error Mean</td>
<td>N</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error Mean</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>19,900</td>
<td>6,9901</td>
<td>1,1052</td>
<td>11</td>
<td>16,000</td>
<td>6,5115</td>
<td>1,9633</td>
<td>42</td>
<td>17,500</td>
<td>7,6102</td>
<td>1,1743</td>
<td>11</td>
<td>13,636</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>16,000</td>
<td>6,5115</td>
<td>1,9633</td>
<td>11</td>
<td>13,636</td>
<td>4,8430</td>
<td>1,4602</td>
<td>40</td>
<td>24,375</td>
<td>4,7915</td>
<td>1,7576</td>
<td>40</td>
<td>17,182</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>17,500</td>
<td>7,6102</td>
<td>1,1743</td>
<td>40</td>
<td>24,375</td>
<td>4,7915</td>
<td>1,7576</td>
<td>40</td>
<td>16,850</td>
<td>2,3375</td>
<td>1,3696</td>
<td>40</td>
<td>17,182</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13,636</td>
<td>4,8430</td>
<td>1,4602</td>
<td>11</td>
<td>23,091</td>
<td>3,7271</td>
<td>1,1237</td>
<td>11</td>
<td>23,091</td>
<td>3,7271</td>
<td>1,1237</td>
<td>11</td>
<td>23,091</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>24,375</td>
<td>4,7915</td>
<td>1,7576</td>
<td>40</td>
<td>24,375</td>
<td>4,7915</td>
<td>1,7576</td>
<td>40</td>
<td>24,375</td>
<td>4,7915</td>
<td>1,7576</td>
<td>40</td>
<td>24,375</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>17,182</td>
<td>3,1565</td>
<td>1,9517</td>
<td>11</td>
<td>17,182</td>
<td>3,1565</td>
<td>1,9517</td>
<td>11</td>
<td>17,182</td>
<td>3,1565</td>
<td>1,9517</td>
<td>11</td>
<td>17,182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent Samples Test</th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>Qtype A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>3.30</td>
<td>.568</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>1.731</td>
<td>16.907</td>
</tr>
<tr>
<td>Qtype B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>2.585</td>
<td>.114</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>2.062</td>
<td>24.606</td>
</tr>
<tr>
<td>Qtype C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.074</td>
<td>.786</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>.947</td>
<td>20.92</td>
</tr>
<tr>
<td>Qtype D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.632</td>
<td>.431</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>-.325</td>
<td>13.167</td>
</tr>
<tr>
<td>Qtype</td>
<td>Equal variances assumed</td>
<td>Equal variances not assumed</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>A</td>
<td>-0.8174</td>
<td>0.86174</td>
</tr>
<tr>
<td>B</td>
<td>-0.9998</td>
<td>0.87271</td>
</tr>
<tr>
<td>C</td>
<td>-1.8592</td>
<td>4.4274</td>
</tr>
<tr>
<td>D</td>
<td>-2.0603</td>
<td>1.3966</td>
</tr>
</tbody>
</table>

This means the students' lower ability in English may be correlated with a lower attainment in cognitively demanding tasks. Such results could be expected as this part of the project involved much L2 manipulation; hence it became difficult to differentiate difficulties resulting from a lower-ability in English from those resulting from a lower ability in information processing as such.
CHAPTER 6
FINDINGS: THE PRODUCT OF THE LEARNERS’ ACTIVITY

The results presented in this chapter show the specific outcomes of the various tasks the students completed and how this was affected by the settings in which they undertook them (ICT or paper and collaborative or individual). As in previous chapters, particular attention is given to the results of the low-achieving students.

The outcomes examined were the students' final productions in Phase 2. These included:

- The final news Webpages or newspaper front pages, including a number of press-specific elements; and
- The students’ written productions in the form of press articles.

To undertake this analysis the following was the procedure adopted:

1) Determination of whether sufficient attention had been applied through all the steps of this long process, and as such, that there was persistence of effort, an indicator of the motivational state of the learner (Dörnyei, 1994a, 1994b, 2009a, 2009b; Dörnyei & Otto, 1998; Dörnyei & Schmidt, 2001). For this part, whether the preliminary activities examined in the previous chapter had been completed with similar care and attention, were taken into account.

2) The student products from the macro-task (the creation of the Webpage or front page) and the subtask (the writing of an article and/or editorial) were all examined and compared in the following way:

- The graphic quality of the final product and compliance with the genre norms and rules were investigated and together were taken as evidence of the affective and cognitive investment made by the learners.
• The quality of linguistic output demonstrated in the students’ products was also examined, in particular from those deemed to be low-achievers.

1. Persistence of Effort Throughout the Task

The project which was the basis of this research was undertaken over 6 to 8 class periods, as specified in Chapter 3, and was completed within 3 to 5 weeks, depending on the teachers’ time allocation for the class. 68% of the 77 students completed the whole task, including the two preliminary tasks, the macro-task and its subtask. 21% omitted to perform one of the required tasks or subtasks.

Each of the different steps of the project and the production of work it required were examined and the rate of missing production recorded for each. The purpose was to see if there was any reduction in motivation and effort as a result of this somewhat long and complex process. For participants as a whole, 11% of the students (or dyads when working collaboratively) did not submit at least one of their preliminary tasks. Similarly, 11% of the students (or dyads of students) did not finalize the project and/or did not submit it to the class teacher. Of the 89% who did, 12% omitted to include at least one of the required writing components, be it the article and/or the editorial. Thus, on average there was approximately a 10% gap observed between what was required and the actual production. However, according to the participating teachers, this is also quite typical of the usual happening in the classes concerned. Figure 48 illustrates the variations in the students’ persistence of effort:
Completion of the 4 steps of the project: preliminary tasks 1 & 2, macro-task, sub-task.

Figure 48. Project completion by learners

The reduction of motivation and/or effort is best represented in Figure 49 which shows how the ‘loss’ is accentuated in the second phase of the project. This may be as a result of the difficulties encountered (mostly due to lack of time as shown in Chapter 4); however, the questionnaires have shown that many learners also thought: 1) the preliminary tasks were too complex; and 2) they devoted too much time to them (possibly as a result of their complexity, but also because there were too many). Yet these tasks were more satisfactorily completed (at least on a quantitative basis) than the macro-task in phase 2.

It could be hypothesized that whilst preliminary tasks were long and complex, they were within the learners’ cognitive reach, that is, within their ‘comfort zone’ where they have a better understanding for what needs be done. Some questions required answers and filling out of blanks. Further, even when the answers were incomplete, it was still possible to submit such work without feeling too embarrassed (with an “After all, one cannot know everything” attitude). In phase 2 however, a sketchy front page or an inadequate unfinished homepage would immediately catch the eye, undermining even the most diligent work. Another hypothesis may be that those learners who failed to submit the preliminary tasks in phase 1 may have felt disheartened in the second phase as a result.
Despite these outcomes, given the amount of work that was required and its relative complexity, these are encouraging results. The analysis of post-task questionnaires has shown how challenging this project was for many of the students. Whether working with a peer or independently, overcoming technological difficulty or planning and sketching on paper, going through a whole set of prescribed tasks and subtasks, negotiating task instructions, expectations, and defining possible outcomes, the tasks appeared to be quite daunting for some learners. These difficulties were all reported in their answers to open-ended questions (a summary of those was presented and discussed earlier in Chapter 4). Contrarily, analysis of the questionnaires showed that the majority of the participants would happily undertake a similar project in the future (see page 131), thereby suggesting that difficulty or even failure at some stage of the project, was not inhibitory.

As with all sets of data in this research, the researcher also undertook to verify if a particular context affected the results of working collaboratively and/or with ICT\(^9\).

1.1 Collaboration

The collaborative setting had a significant effect on the task completion, as shown by a t-test \((t = -3.393; p = 0.001)\). Those students in the collaborative groups (whether with or without ICT) submitted an average of 3.7 pieces of work out of the

\(^9\) This set of data does not include the individual/paper group (taught by Teacher 1) as it was not possible to collect their preliminary tasks.
four required, which compares very favourably to 2.8 pieces for those in the individual groups.

1.2 Technology

The students working in the ICT setting, however, did not produce such good results for the number of completed pieces of work (3.4 out of four), whereas students in the paper groups rated better (3.9). A t-test performed to compare results between these two settings showed a tendency towards significance ($t = 1.865; p = 0.068$).

1.3 Conclusions

The above results indicate that collaborative work in a paper setting was more conducive to a sustained effort by the students in completing each step of the global project than any other context.

One could argue that the Internet medium and an ICT environment, by making the tasks more complex and cognitively costly, resulted in a lower success rate. Another reason, as showed in the videos and reported in Chapter 5, may be that the number of technical difficulties encountered was overwhelming for some. On the contrary, collaboration, by making students responsible vis à vis one another, has encouraged them to finalize their work and rely on one another when they did encounter problems.

2. Overall Task Achievement

Scores on the two dimensions of the project (article writing and news page creating) in the four group settings are presented in Figure 50. The differences observed between the individual/paper group and the whole of the other groups are significant for both the written aspects of the project ($F = 15.947; p<0.0001$) and for the final product consisting of the Webpage or front page ($F = 11.449; p = 0.001$), as evidenced by a GLM (General Linear Model) procedure. The individual/paper group achieved lower scores for the written expression as well as for the creation of the news page, as evidenced in Figure 50 below:
It could be argued that these students in the individual/paper group, deprived of the opportunity to collaborate, do not benefit either from any additional incentive induced by the ICT settings (i.e., the “hook function” as described by Raby (2008, 2009a; Raby et al., 2008)). Thus this setting does not appear as appropriate as the others for this type of project. The collaborative/paper setting, however, seems to be better suited. Yet, the analysis of questionnaires does not point to any particular psychological or other affective reason that could explain this result. It may be that cognitive explanations are necessary in this case (see page 142).

3. Meeting Task Requirements: The Final Product

Success in completing the final product (newspaper homepage or front page) was assessed through the sum total of three criteria described in Chapter 3 (see page 77). In this next section the students’ overall success in producing the product, as well as how they rated on the three criteria used to distinguish this result are outlined, with particular attention to the effects of the collaborative and ICT variables.

3.1 Explicit versus implicit task demands

As was expected from the task design model, learners experienced significantly greater difficulty ($t = 8.21; p < 0.001$) in meeting the implicit expectations (respect of ergonomic rules, signature of articles, captions of illustrations) than explicitly given instructions (name of newspaper, index, article length for example).
The criteria also included the use of additional elements that had neither been specified nor suggested (e.g., creating a whole site rather than a single homepage, writing several newspaper pages, including diverse illustrations and animations, listing additional articles, links or sections). With regard to this final criterion, about half of the students or dyads (34) included these additional aspects, although this does not correlate with how well these learners otherwise met the requirements of the task. In other words, those who made additions were not found to rate significantly better on the sum of explicit and implicit instructions, as found when a t-test was performed ($t = -0.62; p = 0.537$). Table 24 depicts how learners in all conditions met the demands of the task, with an average total score of 14.6 out of 25.

Table 24

<table>
<thead>
<tr>
<th>Macro-tasks result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webpage/ Front page</td>
</tr>
<tr>
<td>Average score</td>
</tr>
</tbody>
</table>

As with other areas investigated, the researcher looked at the distinctive effect of the two variables, collaboration and ICT, comparing such effects using statistical analyses.

3.2 Collaboration

The collaboration variable was found to have two main positive effects:

Specifically those working in collaborative groups obtained on average a significantly better score (10.3 of 13) in addressing explicit instructions than those in individual groups (8.9). A t-test shows this difference is significant ($t = 2.184; p = 0.033$). This may be interpreted, as observed in the videos, as the beneficial effect of task negotiation and redefinition, both of which may have led to meeting the task demands more effectively.

Collaborative groups also rate significantly better (1.2 of 5) on average for additions, thus inducing a greater creativity since individual groups only achieved an average score of 0.5 ($t = 2.199; p = 0.032$). Therefore, it would appear that
collaboration helps promote a greater level of personal involvement in the completion of the task.

Thus it can be concluded that collaboration plays a positive role not only by helping learners better meet the task requirements but to sustain further their involvement by going beyond what is strictly required of them. Figure 51 illustrates such positive impacts of collaboration:

![Figure 51](image)

Figure 51. Achievement in meeting the requirements of the task (explicit and implicit) according to collaboration variable

3.3 Technology

A t-test performed between ICT and paper groups shows two negative effects for ICT:

- ICT groups score lower on the expectations (implicit) criteria (2.9 vs. 4.8 for paper groups) and this difference is significant ($t = 4.869; p < 0.0001$).
- They also scored less in the area of additional elements (0.7 vs. 1.5) and this difference is also significant ($t = 2.794; p = 0.007$).

Therefore it seems that learners in ICT settings have mainly put their efforts into addressing explicit instructions, to the detriment of more implicit demands on their creative input. Hence, technology appears to have inhibited critical competencies concerning some of the processes involved in task redefinition, that is, working out what is implied by the task, not only what is specifically asked. Further, ICT settings seem to have impeded rather than enhanced creativity. Time and
technological constraints were both consistently reported in the questionnaires (see Chapter 4) by the participants as reasons to explain this observation.

3.4 The interaction between variables

An interaction between collaboration and ICT was observed regarding explicit task instructions, as found after a GLM procedure ($F = 27.651; p<0.0001$). In the individual setting, students working with ICT met the explicit task instructions more effectively than did those working on paper (11.4 points versus 7). For the collaborative groups, however, the tendency is the converse: those working on paper obtained better scores for effectively matching task instructions than did those working with ICT (11.2 points versus 9.9). Individual work, therefore, seems a more appropriate approach for work on the Internet, while collaborative work is more effective in pen and paper situations in respect of meeting explicit task instructions.

A similar type of interaction applies for the implicit demands (expectations) of the task ($F = 9.238; p = 0.003$). In the individual setting, the ICT variable does not have a significant effect on the respect of such expectations (3.4 for the paper group versus 2.9 for the ICT group), but in the collaborative setting, this effect was important and significant (5.8 for the paper group versus 2.9 for the ICT group).

These two results support the assumption made by the researcher that collaboration, not just language, content or technology, may be a task domain in its own right. Further, the collaboration variable interacts with others and has a measurable effect on the students' performances. To illustrate this, Figure 52 shows the better results obtained for both explicit and implicit requirements in the collaborative/paper setting:
The average total score the students achieved in the different group settings are presented in Table 25. The higher score obtained by the collaborative/paper group compared to those in the three remaining group settings is significant, as confirmed by a Bonferroni test $F = 18.617; p<0.0001$.

Table 25
Final product scores according to group setting

<table>
<thead>
<tr>
<th></th>
<th>Individual /paper</th>
<th>Individual /ICT</th>
<th>Collaborative /paper</th>
<th>Collaborative /ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average score</td>
<td>11.2</td>
<td>14.4</td>
<td>18.9</td>
<td>13.7</td>
</tr>
</tbody>
</table>

To explore further the reason for the collaborative/paper group being more successful than were the others, the three criteria used for the evaluation of success in completing the task were examined and compared by way of a t-test. As expected from our earlier findings, results showed the learners in this group to be rated better on all three criteria, whether this was for explicit instructions ($t = -2.404; p = 0.019$), implicit instructions (expectations) ($t = -6.864; p<0.0001$) or additions ($t = -4.083; p<0.0001$).
When this group’s results were compared with the other collaborative groups (i.e., those in collaborative/ICT settings), it rated better on (implicit) expectations and additions; however, the difference found for the (explicit) instructions was not statistically significant ($t = -1.94; p = 0.058$). To examine whether this was due to a teacher or a number effect, a t-test was performed on Teacher 2’s learners alone, as she taught both types of collaborative groups. While no difference could be evidenced either for explicit instructions ($t = -0.596; p = 0.555$), results were still significantly higher in the collaborative/paper than in the collaborative/ICT group regarding both implicit expectations ($t = 4.373; p < 0.0001$) and additions ($t = 7.611; p < 0.001$). Again, this is in agreement with the earlier findings.

Meanwhile, the individual/paper group’s lower performance can be attributed to its significantly lower score on explicit instructions alone ($t = 5.164; p < 0.0001$) as no differences were recorded for the two other criteria measured against the other three group settings.

On the other hand, a t-test was performed on Teacher 3’s class where the two groups were working with the Internet: one class was using an individual/ICT setting and the other in a collaborative/ICT setting. The results showed no significant evidence of the effect of collaboration.

Hence, it would seem that the better results obtained by the collaborative/paper group in meeting implicit expectations and providing additions may be due to the paper-based setting rather than to the collaborative aspect of the work.

Lastly, it should be noted that the individual/ICT group which reported experiencing the most difficulty, as shown in Chapter 4 (see Figure 38 page 126), performed well on the task. This suggests that difficulties were eventually overcome, perhaps as a result of the enhanced effort made compared with the other groups (see Figures 32 & 33 on pages 116 and 117).

3.6 Conclusion

To cope with the demands of the task, it appears that collaboration between students was particularly effective, especially with regard to explicit instructions and additions. However, addressing implicit expectations remained challenging and this was further accentuated when working on the computer.
This phenomenon may be explained by the increased mental workload induced by the manipulation of varied task domains over an extended period of time. It may be argued that the technical challenges of the task led to a greater focus on explicit instructions (getting the task done) to the detriment of more implicit expectations. As mentioned earlier, time constraints generated as a result of technical difficulties, probably added to the problem.

3.7 Effect of language proficiency

Concerning lower-achieving learners, the distribution of score points was similar to that of the total participant cohort (Figure 53). This project seemed not to have had a discriminatory effect for these particular students even though they tended to experience more difficulty than others already had to meet implicit expectations in the ICT settings (t = 1.711; p = 0.095).

The reminder is that these results only concern a small number of learners. Whether the paper setting was more beneficial for low-achievers, in the same way as it was for the cohort as a whole, cannot be ascertained because four of the six students in this group setting worked collaboratively. Hence, they may have also benefited from collaboration.

![Figure 53. Low-achievers’ task achievement](image)

4. Written Work (On Task)

In this next section, the quality of the language produced by the learners in the course of the project in comparison with learners’ regular written work standard
is examined. This was done by way of the writing subtask incorporated in the macro-task. This subtask was designed to be for individual response from within collaborative groups; however, some interaction between the participants may have occurred.

Writing productions were scored using three criteria, content, form and specific language features targeted by the project, as described in Chapter 3 (see page 80) and the scores for each of such criteria were in turn examined.

4.1 Quality of the language produced

The scores for written expression remained constant between the standard written work (6.5) and the articles and editorials written specifically for the project (6.7), as measured by a t-test (t = -0.708; p = 0.482). This means that the task did not induce learners to improve their written productions as a whole, but on the other hand, its relative complexity did not hinder their written performances either (see Figure 54).

![Figure 54. Comparison of standard written work with on-task writing production scores according to group setting (all 3 criteria)](image)

As in the previous section, the students’ performances on each of the criteria were sought (see page 81 for comprehensive details of the criteria). Some variations were observed between the groups, particularly if the first two criteria were combined (thus providing a picture of the quality of the language produced without taking into account the use of some specific language features). The quality of the individual groups’ written productions in the project (on-task written work) was
found to be significantly lower ($t = 2.417; p = 0.028$) than that usually produced by the same students (standard), whereas the collaborative groups maintained the same level (see Figure 55):

![Graph showing comparison]

Figure 55. Comparison of standard written work with on-task writing production scores according to group setting (content and form criteria)

Meanwhile, on the third criteria concerning specific language features, the collaborative groups obtained a greater score on task ($t = -3.815; p<0.0001$). In the two collaborative settings, there was evidence that the students made appropriate use of the specific language features targeted by the task. However, a stagnation of the individual/ICT group, evidenced in all three criteria, may be explained by a ceiling effect due to the high initial score in this group (3 of 5). The higher language proficiency of this group may be explained by an age effect (learners in this group were, on average, a year older than the rest of the cohort). Similarly the results for the individual/paper group did not vary significantly as scores were already initially lower than the others prior to the task. For details of the various groups' scores see Table 26:
Table 26
Writing subtasks results

<table>
<thead>
<tr>
<th></th>
<th>BEFORE the project</th>
<th>DURING the project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content + accuracy</td>
<td>Specific language features</td>
</tr>
<tr>
<td>Individual / paper</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Individual / ICT</td>
<td>6.2</td>
<td>3</td>
</tr>
<tr>
<td>Collaborative / paper</td>
<td>6.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Collaborative / ICT</td>
<td>4.6</td>
<td>1</td>
</tr>
</tbody>
</table>

A model of linear regression was used to fine-tune this analysis. A significant correlation was observed between the regular and during-task productions ($t = 5.8; p<0.001$). This means that the learner’s regular level of performance determines his or her level of performance during the task (see Figure 56). In addition, this level was correlated with the level of achievement in the placement test. This result was expected as the structure of the project included only limited work of the writing competence as such. However, at the same time, an analysis of the regression shows the collaborative groups progressed more than the individual ones ($t = 1.99; p = 0.051$). Collaboration is the only variable with a significant positive effect on the score obtained for written productions during task, as no effect of the ICT variable could be demonstrated when applying the same method (Note. The model also integrates age and gender as the former allegedly played a role in language proficiency (see above), and the latter on computer use (see Chapter 4).
Figure 56. Analysis of regression for the written work

Linear regression analysis enabled an estimation of the theoretical value of the on-task written production based on the value of the standard work in the collaborative and individual settings (see Figure 57):

![Graph showing regression analysis](image)

Figure 57. Comparison of linear regression for the written work in individual and collaborative groups

The positive role of collaboration may first seem surprising as this section of the project regarding the writing of an article or editorial (the subtask) had been
designed as an individual component in all group settings, including the collaborative groups; however, an examination of video data casts some light on this particular finding. Even though the instructions specified that every student had to produce their own piece of written work, students in the collaborative groups continued their collaboration for this particular subtask and helped one another overcome any difficulties encountered. A key aspect of the research design in this respect is the fact that the students had been permitted to choose their partner within the prescribed group. Hence, though it was an unusual situation for many, little reluctance to collaborate was shown, collaborative work being undertaken willingly by most. Possibly the sense of responsibility the learners developed towards one another as a result of working together prevailed.

4.2 Task complexity

Apart from the determining role of collaboration, another noticeable outcome concerned task complexity. It was feared that a relatively high task complexity could hinder the writing component of the task. Instead, activation of knowledge in different task domains (linguistic, cultural, technological, collaborative), and the higher cognitive load induced by the project, did not seem to result in a greater difficulty for students to meet the demands of the writing task.

4.3 Technology

Whether or not the learners used technology did not appear to have a significant impact on the quality of the writing. It was expected that availability of the word processor and its in-built tools, as well as the online help material provided, could have led to greater mastery of lexical items, and syntactical and discursive codes. In fact, as evidenced in Chapter 5, field observations and screen captures showed that few students resorted to this type of assistance. As far as the writing process was concerned, most students worked on the computer in a similar way to those working on paper: writing a draft paper and even using print dictionaries.

4.4 Effect of language proficiency

Lower-achieving learners, for their part, performed similarly on task to more regular work for content and accuracy, as shown by a t-test ($t = 0.337; p = 0.742$). They also followed the general trend with a significant increase of points scored.
pertaining to the specific language features targeted (an average +1.1 points compared with their regular work, $t = -3.378; p = 0.005$). Though modest, this result does not support the hypothesis that a complex task would put lower-achievement learners at more risk (see Table 27).

Table 27
Low-achievers' written performance

<table>
<thead>
<tr>
<th></th>
<th>BEFORE the project</th>
<th></th>
<th>DURING the project</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content + accuracy</td>
<td>Specific language features</td>
<td>Total</td>
<td>Content + accuracy</td>
</tr>
<tr>
<td>Low-achievers</td>
<td>4.3</td>
<td>0.8</td>
<td>5.1</td>
<td>4</td>
</tr>
<tr>
<td>Non low-achievers</td>
<td>5.4</td>
<td>1.5</td>
<td>6.9</td>
<td>5</td>
</tr>
</tbody>
</table>

5. **Qualitative Analysis of the Students' Products**

This section examines the students' productions, using data from case studies, to exemplify the quantitative results. (Note: exemplars of such products are provided in Appendix I).

5.1 **Genre and consistency**

The topics chosen by the learners reflected their interests and so a variety of the types of newspapers and news Websites was produced. The press chosen as illustration ranged from local to national or international newspaper or news Website. Some specialized in sports, women, art, celebrities and even animals. As instructed by the task, the names given to the variety of papers or Websites were clearly inspired by the browsing done in the preliminary tasks. Hence many included the word “daily” in their name (Daily Link, The Crazy Daily, the Daily Truth, Daily Sports), and some “weekly”, such as Weekly News. The word “news” was a popular occurrence in the students’ products (e.g., News Cleek, The Original News, Daily News, People’s News). “Star” and “Life” were also commonly employed. More rarely, some original attempts showed the title had been more deeply researched, such as The Lady Daily or The Light in the Night (sound effect and collocation were
certainly voluntary), or The New Jersey (for a sports paper). Other unusual titles included, Mindblower and England Now.

The index or links provided were generally consistent, showing that an effort had been made to match the newspaper style with its sections. For example, the news Website “Famous” had an index that provided links to rubrics such as Celebrity, Diet, Clothes and so on.

Headlines were often realistic and, in the main, reflected the genre of the newspaper. For example in the students’ newspaper “Daily Link” a headline “A serial killer arrested” occurred, or in another titled “Bath’s Miniature Life” there was a newspaper article “A successful school exchange”. Most articles were signed, as are real press articles, but also perhaps to ensure the teacher recognized the learner’s personal contribution, as this was an individual component in all settings.

Occasionally, however, some inconsistencies were revealed. One of the papers, the “Daily Tribune” (so supposedly published every day), dated September 27th reported on an event that happened on September 8th. In another example a newspaper entitled “Globe-Trotter”, presumably a paper specializing in travel and tourism, featured an article on the death of a Peruvian archaeologist, and also announced Prince William’s forthcoming wedding.

5.2 Design and layout

In general, the products submitted had a carefully planned layout, showing that much care had been taken in designing the news page. It should be noted that paper products were all finalized, contrary to the news Webpages, some of which remained with a hectic layout and missing illustrations.

In the paper settings, products were often enhanced by cut-outs from the newspapers provided by the class teachers. This allowed the presentation of a page using every bit of space and, as a result, many little advertisements or pieces of news were also included. However, the products in the individual/paper setting looked much like schoolwork, whereas the collaborative/paper group generally tried to give their products a professional polish (sometimes using a Word processor at home to type in their text before pasting it on their original newspaper).
There was an effort, particularly in the paper settings, to include realism in
the products: one student drew a bar code, others included issue numbers or the
selling price. Sometimes these artefacts were at odds with the reality: one news
Webpage inappropriately also displayed a price, showing the student’s lack of
discernment. Another expression of such realistic attempt was the occasional
catchphrase that accompanied the name of the newspapers: “The newspaper that tells
you the truth” was the subheading of “The Shocking News”. Other evidence of
trials at giving a stronger identity to the product included “Newspaper of the
year”, “All the current events in the USA and across the Atlantic!”, or “A newspaper
with just news items”.

As with articles, some students took particular pride in their work, adding a
note at the bottom of the Webpage which read, “Website designed by…”

5.3 Content and style

Two types of articles were produced by the students. The first dealt with
general news, this being either pertaining to the news of the time or invented for the
purpose of the project. Examples of the latter often lacked originality, despite their
sometimes fancy or humorous treatment. These included items about a flood, a
murder, or an accident, all of which involved some tragic development. Other types
of news items were subject-specific, such articles dealing with soccer, dancing or
some more serious issue such as racism or the death penalty. The second type of
students’ news article appeared to be better documented, presumably because they
related to the learners’ own centres of interest. In addition, they were often
accompanied by more illustrations than the more general types of news, these
illustrations being generally captioned.

Thus, in general, when the learners’ interest was evidenced, articles were
richer and more care was taken to illustrate them. The downside was that the
learners’ involvement often led them to make personal statements such as those often
found in school-type essays. A number of students also attempted the use of humour
or satire (such as the announcement made in the Daily Sports of a forthcoming
soccer match between France and a team of blind players). Though often clumsy,
they showed that learners had understood the sometimes cruel and pitiless approach
which characterizes the British press, in particular.
The students’ products provided considerable evidence of the acquisition of the correct use of passive forms, nominalization (for example, “Manson concert cancelled”) and article or auxiliary omission (such as, “Saddam captured”), all of these having been the focus of the introductory task.

The following examples are representative of how students tried to write editorials, this particular student (in Example 1) making his/her point on an international political issue. The headline itself is telling, being simple and efficient. It places both parties on an equal footing, separated only by the conjunction “and”. This student’s editorial begins with a storytelling style (“It happened early in the morning”), a device sometimes used in journalism to catch the reader’s attention. Then the student tried to develop his/her views, supposedly reflecting the newspaper’s stance, hence using ‘we’. However he/she quickly adopted a more personal position, and in the second part reverted to the use of ‘I’.

Ex. 1: Student 22 (in the collaborative/paper setting)

America and Saddam (published in Daily Link)

“It happened early in the morning, eventually American soldiers has found the most sought-after since Amerika invested Irak. His face shows that he is very tired and worried about his fate. Although he is arrested by Americans, he continues to defend his country and to accuses Amerika to be a dictatorship. We can ask us who is the dictator between them. America or Saddam Hussein. We know that Saddam Hussein is an oppresser and he doesn’t let some freedom for the Irakian. And Now we wait the promises done for the Irakian of the Amerikan. They must improve its relationship that it has with Irakians.

After that, I want to talk you a bit of the war in the world. The true question is “Why Amerika imposes her lows to other countries and make the police everywhere in the world.”

For instance, instead of saving Irak of Saddam Hussein’s hands, Amerika become another dictatorship. We think, it is just because Amerika is a world power. That is the reason why anyone reacts and doesn’t try to revolt of this injustice. As a result, Amerika will stay a power and will dominate the world.”

10 Words are printed in bold font by the researcher only for the purpose of this thesis, as it evidences the various points discussed.
Student 35 also made a very personal point, using the link-words and expressions often taught in language classes:

Ex. 2: Student 35 (in the collaborative/ICT setting)

Real TV (published in New Generation)

"Telecasts of real tv are fashionable at the moment. There are more look, mainly by childrens. Are there good entertainment or on the other hand are there harmful?

I think they can be a good entertainment if they are taken at the second degree. Loft Story for example is considered like a making to spy people but observe anybody live together where arrived story is amusing, it's like a movie. Star Academy it's as well a telecast of real tv but it lear a job at youngs and it show that the work it's more important for have that you want. All thing considered it is instructive for young people. To sum up I think real tv it's only an entertainment and people should leave off blame this type of entertainment."

Alexandra, Editor

By contrast, Student 50, reporting on the same topic but with a different viewpoint, manages to imprint a journalistic style, with rhetorical devices such as irony and answering his own question (used as headline). Here the tone is more controversial and the distinction between ‘We’ and ‘You’ is made clear:

Ex. 3: Student 50 (in the collaborative/paper setting)

Editorial : Stars, made by television ? (published in Atlantis)

"All over Europe, youth-star shows become very popular. Named Star Academy, Star Search, Superstars and so on, they repeat day after day the same concept.

Millions of onlookers end even whole families passes their evenings in front of their televisions, waiting for the newest happenings. The aim of this shows: new stars. To produce stars, what a nice idea. But we don’t support this new star production. Why? After three years, this “stars” will be forgotten. You don’t get new stars. You get new victims. And another point: this concept don’t respect the hard work of an real star to popularity."
Don’t matter, you make have fun with your show, we just don’t believe that the title of this shows is justified. Star Academy. No, thanks!”

Philipp11, editor

Finally, in the following article by Student 70, the structure is typical of the unfolding of newspaper articles, as evidenced by the introductory and part of the preliminary tasks; the facts are first presented and then these are followed by interpretation and finally examples:

Ex. 4: Student 70 (in the individual/ICT)

Mobile phone and women (published in The Lady Daily)

“A recently survey shows that mobile phones become more than a fashion. More than one in two women have a mobile phone and one in four say that they absolutely need it.

Motivations to have one are very varied according women.

Certains need it for their work, other to can ring family or friends everytime, other simply to feel in secure.

The last January 12th something happened that would have been a tragic accident without mobile phone. A woman with her little boy of 8 years old were victims of an avalanche during their skiing holidays in France in the Alpes. They were wedged and rescuers could find them thanks to the waves emitted but their mobile phone. The boss of rescuers said: "without this mobile phone they could be stay wedged a very long time and I don't know if we will arrived to find them at time for to save them.

So we can say that mobile phone belong to the daily of women and it can be very useful in critical situation.”

5.4 Conclusions

Overall, the products on paper looked closer to ‘real’ newspapers while the news Webpages looked just like any Webpage. This may be because, at the time the task was completed, a Web model was not readily available (Note: since the data collection period, a number of models have been refined and are now well

11 Family name has been removed because of the inclusion in the thesis.

175
established). As a result, the Web-news genre produced was very much a ‘work in progress’, somehow reflecting the reality of the ‘real’ world.

These findings have implications for task design which must incorporate an action-based approach, particularly when the focus is on target tasks, be these real, virtual or ‘cyber’ (Mangenot & Penilla, 2009). One of the implications is that it is easier for learners to replicate or fit in an identified, well-known genre. Therefore, language tasks often work better when set within the limits of such well-worked frameworks. This does not mean that it is best to use traditional resources only; however, it is crucially important that learners are engaged in a form and with content they can access, master and understand. In a sense, this research suffered from using tasks based on still emerging technology. Consequently, many people were unfamiliar with its interface and operating mode, and how to locate the content expected, and so on. It is clear that language tasks are better performed when they fit in the repertoire of learners’ practices, whether these use the latest technology or not. When such conditions are in place, this can lead to real empowerment.

Clearly, a need exists for tasks to be set up in such a way that learners are provided with adequate linguistic, discursive and cultural tools to tackle them effectively. In this regard, the examples discussed above show that the basic link-words and sentence structures on which much of the traditional learning is based do not sit comfortably with genres other than essays. And yet, in an ‘actional’ perspective, essays are probably the most unlikely manner in which learners will have to express themselves in their L2.
CHAPTER 7
CONCLUSION

This thesis sought to answer three research questions. To do this, data were analyzed from two perspectives, based firstly on processes and then on products. Quantitative methods were used that helped identify tendencies in learners’ responses, behaviours and performances. Once these were identified, it was possible to examine the data qualitatively to look for confirmatory evidence. Such an approach seemed appropriate for uncovering the mechanisms of a multi-variable situation. This chapter summarizes the research findings and highlights the main conclusions that can be drawn from them. Acknowledgement about the limits of the study is also outlined. Finally, the implications for the design and implementation of collaborative Web-based tasks are discussed.

What was the contribution of the teacher?

As indicated, one unexpected finding of this research was the so-called teacher effect. That is to say, regardless of the task context they worked in, the most significant from the learners’ perspective, affecting their perceptions, was the impact of the teacher’s individual approach.

Further, the tasks used in this study were designed by teachers for their learners. As a result, the learners appeared to have very similar expectations about, and appreciation for, the tasks regardless of whether they were performed on paper or on the Web. However, when teachers used collaboration as part of the task approach, this contributed in positive ways to the learners’ experience, although this was mediated by the context in which the tasks were undertaken (i.e., paper or Web based).

How did CALL tasks affect learner performances in project-based pedagogy?

In general, the learners viewed the CALL tasks positively, especially when these challenged their competence, promoted relative autonomy from the teacher and reinforced their sense of achievement once difficulties had been overcome. Even so, despite the public dimension of the Web-based tasks used in this study, and the fact that they were performed in an open space with potentially many viewers, this seemed to have a limited effect on the cohort’s attitude and motivation.
In this study it was found that CALL tasks usually took more time for learners to complete, and they were often more distracted when doing so, especially when working collaboratively. Further, in ICT settings, learners tended to concentrate only on the essentials and rarely elaborated what they produced. However, the results also showed that Web-based tasks may be beneficial for the acquisition and long-term retention of cultural awareness, but only if collaboration is not additionally required.

In terms of the learners' involvement, CALL tasks led to no more learner dropouts because of their additional (technological) dimension compared with paper-based tasks. However, in terms of the processes in which the learners engaged, CALL tasks appeared to be no more beneficial for either linguistic or strategic skills.

How did collaboration affect learners' performances?

The learners viewed collaborative tasks positively, their responses indicating that this context provided them with a better sense of achievement with regard to the various competences involved in completing the task (e.g., linguistic, creative, instrumental).

Additionally, collaboration appeared to facilitate the task redefinition process, especially when task requirements were implicit, and as such leading to positive outcomes as products from the learners' activity. It also helped learners to develop their writing skills and appeared to enhance their acquisition of advanced knowledge. However, it is also possible that collaboration may have impeded learners' abilities to manipulate their basic knowledge.

Further, contrary to learners' preference, this study showed that collaboration paired with ICT does not seem to promote the conditions ideal for learning. In fact, the interaction between these two variables was found to impact negatively on both the learning processes and the outcomes. Thus the impression gained was that the use of ICT may undermine the benefits of collaboration.

How did the low-achieving learners perform?

This investigation showed low-achievers to produce some interesting results, especially when undertaking CALL tasks in a collaborative way. Because of the two additional task domains they entail (social and technical), collaborative CALL tasks appeared to provide further opportunities for empowerment on the part of students who are low-achieving linguistically. Therefore, low-achievers, though challenged by such tasks, are no more at risk than any other learner because they can resort to other skills.
In ICT settings this occurred when the low-achiever had a sufficient command of the technological environment; in the paper settings it occurred when they had an adequate understanding of the task content domain. Further, when they were teamed with a more linguistically able student, it appears that the pair benefited from such collaboration. As a result, the writing performance of low-achieving learners was not significantly affected by the task.

In terms of task context and pedagogic setting, it appears that the 'traditional' individual/paper setting was potentially the most ill suited of all four settings for the learners. Specifically, it seemed to provide the least opportunities for both interaction and diversification of sources. Indeed this setting put students at a disadvantage in terms of their product finalization. This was demonstrated by the scores of their final products, though such an effect could not be demonstrated on the writing subtask, the initial results being already lower than for the other groups. Initially it was assumed that the project would be less motivating when carried out under such conditions; however, this could not be verified and, in fact, the learners in this setting widely reported enhanced motivation as a result of task completion in this context.

On the other hand, the setting that seemed most conducive to success in the completion of this project was undoubtedly the collaborative/paper setting. This had positive effects on the learners' persistence of effort, on their capacity to meet the implicit demands of the task, and on the final product they presented. Moreover, this appeared to allow for greater involvement as more additions were provided, and the learners also produced a better quality of language in their writing. The conditions also seemed to help the learners better process the higher-order preliminary tasks. This does draw into question the utility of CALL tasks when undertaken collaboratively.

One of the reasons for the relative failure of the experimental collaborative/ICT setting in providing evidence of the advantages of using technology combined with collaboration may be that, at the time of data collection, working in this way was unusual, in that it may have caused difficulty and disorientation. It may still be the case today, though with the increasing popularity of Web-based material for language teaching since the data were collected for this research, this would be to a much lesser extent. As with all pedagogic innovations, adjustments and compromise – general adaptive operating modes – must first be put in place. Thus the results reported may be an artefact of the lack of familiarity, at that time, for teachers and learners alike when using technology combined with collaboration.
In contrast, collaboration when undertaken in traditional paper-based settings would have been more familiar to the participants, and may be the reason for the learners faring better when working in this context. Even if changes have occurred (in terms of increasing familiarity), clearly the results of this research demonstrated that both task familiarity and technological literacy must be considered as critical aspects for CALL task design.

As with all research, there are limitations and weaknesses that must be acknowledged with respect to this study. Firstly, the criteria for the evaluation of the learners' productions were selected subjectively. Secondly, some of the data were difficult to exploit (e.g., the audio quality of the videos), or incomplete (e.g., Teacher 1’s preliminary tasks and delayed post-tests), thereby impinging on the results, particularly those regarding content awareness and performance on the preliminary tasks. Thirdly, those learners who were identified as low-achieving were not always classified in the same way according to their teachers or by virtue of their grades. As such the category of ‘low-achieving’ students must be drawn into question in this research.

Because this research was carried out in ways attempting to maintain ecological validity, it was not possible for all the variables to be controlled. Hence the language proficiency of the various groups was initially different and this is why a number of countering steps was put into place (e.g., within-subjects comparisons, rather than only between-group comparisons). However, whilst acknowledging these limitations it is contended that the picture provided by this research manages to show the complexity of the variable interactions and some of their effects on learners' processes and performances.

Contributing to the limitations of this study is the fact that fieldwork and data collection on this project were implemented before the emergence during the last three or four years of Web 2.0. If this research were undertaken now, blogs and social networks would make mastery of Dreamweaver and the creation of a proper Website unnecessary altogether. As such, the task would not rely on high level technical skills because this knowledge would presumably have been acquired and widely shared among students already. Thus the physiognomy of the task would be entirely different. Further, most young people today have grown up in a world of digital literacy in which they have often been self- or peer-taught. It is almost certain, that the knowledge gap would be to the advantage of the learners over their teachers as a result. In this
circumstance there would have been significant changes in the language class processes observed and described in Chapter 5. The nature of the teacher-learner interactions especially would undoubtedly be different.

In this study no favorable impact of the particular ICT setting was demonstrated, although it seemed that individual work, rather than collaboration, with ICT was better suited for task work; whereas collaborative work for paper-based tasks seemed to be preferable. Hence it appears that methodology was primary, and that the impact of ICT was mediated by other contextual variables, as was demonstrated in the analysis of the pre- and post-task questionnaires. Even so, many questions remain about the role of technology and collaboration, especially in relation to motivation.

When language teachers think of how to implement changes in their pedagogy and how to bring the outer world into their classroom, technology will be used increasingly. This is due to both wider use and dissemination of technology in everyday life, and the availability of better equipment for schools and individuals. Therefore changes that have taken so long to occur in language classes will no doubt be forced upon teachers (and learners, as their expectations change, too) by the outside world. As change accelerates, the incorporation of technology into the classroom will become increasingly less of an issue – it has already become a part of normal classroom life in France and elsewhere. Therefore, the underpinning question for this study, "What if we introduce technology and collaboration in teaching/learning?" will increasingly become, "How do we improve the way our teaching/learning experiences accommodate to daily technology and social networking?"

As acknowledged in this thesis since the data were collected, new approaches have been developed and these have benefitted from advances in both computer technology and social practices, especially those entailing the use of the social Web. From an initial source of diverse information in the early 2000's, the Web has become both a user-friendly communication tool and a resource for pedagogic development. The initial limitations of Web-based tasks being focused on written materials have dissipated as today audio and video materials abound on the Web. Knowledge is also more shareable, as it is enhanced by two-way communication means, the possibility to upload as well as download, and to communicate in real-time in an effective and reliable way. Perhaps the most critical outcome of this observation is that learners can now take part in the target language community, not simply 'pretend' to take part. With computer-mediated communication they can also interact with others, native speakers or with
other learners of different L1s, which makes the process of negotiation not only more possible, but in fact inevitable.

These changes should encourage teachers to use more technological and collaborative/interactive modes in their teaching. However, it does not mean that devising tasks for language learning is any easier. Providing for purposeful interaction, aiming at meaningful productions, making attention to form necessary and yet natural, remain challenges for the task designer. The findings of this research posit that pedagogy and teaching methodology, while modeled by the artefact in use (whether it be computers or something else), will continue to rely heavily on clever task design and on teachers’ teaching competence. In fact, the manner in which the project in this study was managed and perceived (be it in an ICT context or not, and whether it entailed collaboration or otherwise) was still heavily influenced by the teacher’s personal teaching style. The context did not affect these teaching styles to a great extent: they remained similar and very distinct. Further, this study showed this insight to be clearly perceived by the learners and hence directly affected how they envisaged the task.

Even so, as computer-assisted learning continues to develop, and as collaborative tasks become more common place in foreign language learning situations, learners may construct new schemas of both computer use and collaboration. They will increasingly learn how to manage and organize their work according to such conditions. As their technological literacy develops and grows, this will progressively ease the cognitive load associated with CALL tasks.

What this research project ultimately teaches us, apart from the pitfalls of a technology-based pedagogic innovation, is how short-lived such innovation may be. Change in technology is occurring at an ever increasing pace, as evidenced by the numerous alternative devices and new technologies that are constantly being developed, introduced and adopted (Smartphones, tablets, Facebook and Twitter in the late 2000s). Therefore pedagogic scenarios and dispositifs\(^\text{12}\) within a CALL task-based approach are bound to continue to evolve and adjust to such dynamic environments.

With respect to the use of tasks, an observation made by one of the students working on the project in the collaborative/ICT group, “I had interest but not motivation”, highlights the challenges this methodology presents to teachers. Projects

\(^{12}\) As defined by Mangenot, a dispositif is a system that comprises task, conditions and environment.
and new pedagogy do arouse the learners' interest, particularly when technologies are used. However, transforming this initial interest into enhanced and long term motivation must certainly not be taken for granted; it is a challenge that we need to continue to explore in order to better serve the needs of language learners.
REFERENCES

Rapport de recherche: Evaluation de cyber-Scénarios Collaboratifs pour l'Apprentissage des Langues Étrangères (ESCALE).

189

INDEX OF AUTHORS

Adams, N., 42
Anderson, J., 18, 146
Andrews, C., 48
Ariza, A. N., 19
Arneil, S., 49
Ayres, R., 91
Baillie, J., 1
Bandura, A., 23, 42, 43
Beatty, K., 49
Bérard, J.-M., 3
Berin, J.-C., 40, 53
Bonneville, J.-F., vi, 134, 135
Bressoux, P., 1
Briguglio, C., 22
Bruner, J., 21
Burden, R.L., 32
Burt, M., 14
Campanale, F., vi, 135
Caroll, S.E., 20
Chamot, A.J., 32
Chanier, T., 47
Chapelle, C.A., 1, 2, 53
Charos, C., 32, 91
Chomsky, N., 9, 11, 12, 16, 17, 18
Clahsen, H., 19
Clark, R., 8
Clement, R., 32
Conway, J., 22
Coste, D., 39, 41
Coulson, R.L., 26
Covington, M., 42
Crookes, G., 30, 34
Csizér, K., 32
Deci, E., 43
DeKeyser, R., 45
Demazière, F., 4, 40
Develotte, C., 22
Dodge, B., 2, 4, 49
Dörnyei, Z., 4, 32, 91, 118, 153
Doughty, C.J., 10, 31, 37
Driscoll, M.P., 18, 21
Dulay, H., 14
Egbert, J., 1
Ehrman, M., 31
Ellis, R., 15, 17, 19, 27, 33
Ely, C.M., 32
Fathman, A., 14
Fayol, M., 144
Felstrovich, P.J., 26
Franken, M., 2
Frohlich, M., 29
Gardner, H., 20, 32, 43, 91
Gardner, R.C., 20, 32, 43, 91
Garrett, N., 2
Gass, S., 17, 19
Gauchet, 28
Ghaith, G.M., 5
Gregg, K.R., 14, 15, 16
Guilloteaux, M.J., 42
Hancock, S., 19
Healey, D., 22
Henri, F., 45
Hinkel, E., 22, 48
Hoc, J.-M., 52
Holmes, M., 49
Horwitz, E.K., 22
Hubbard, P., 3
Jacobson, M.J., 26
Järvelä, S., 42
Jehng, J.C., 26
Johnson, K., 34
Kanganas, A.P., 17
Kennett, B, 22
Kessler, G., 2
Koenraad, A.L.M., 32, 33
Krashen, S., 12, 13, 14, 15, 16, 17, 18, 19, 30
Lafford, B.A., 2
Lambert, W.E., 91
Lamy, M.-N., 47
Lantolf, J.P., 23, 48
Larsen-Freeman, D., 29
Leaver, B., 31
Lebow, D.G., 21, 45
Leeman, J., 17
Leplat, J., 52
Levy, M., 1, 2, 3, 20, 48, 53
Lightbown, P., 19, 24
Lima, L., vi
Long, M.H., 10, 17, 19, 24, 25, 30, 31, 34, 36, 37, 45
Louveau, E., 1, 4
Lundgren-Cayrol, K., 45
MacIntyre, P.D., 32, 91
Mackey, A., 17, 25, 74
Makino, T., 14
Mangenot, F., vi, 1, 4, 22, 23, 36, 38, 48, 50, 53, 176, 182
Mason, D., 146
McLaughlin, 13, 15, 16
Meisel, J., 19
Naiman, N., 29
Narcy-Combes, J.-P., 1, 2, 4, 40
Niemivirta, M., 42
Nikolov, M., 43
Noels, K., 32
Nunan, D., 27, 30, 36, 39, 40, 41
Oblinger, D.G., 46
Oblinger, J.L., 46
Oliver, R., vi, 17, 25, 137
Otto, I., 2, 32, 118, 153
Otto, S.E.K., 2, 32, 118, 153
Pelletier, L., 32
Penilla, F., i, 4, 5, 23, 48, 176
Petrie, G., 1
Piaget, J., 9, 17, 18, 26
Pica, T., 7, 17, 23
Pienemann, M., 14, 19
Pouzard, G., 3
Prabhu, N.S., 35, 36
Puren, C, 22, 27
Pusack, J.P., 2
Rabardel, P., 1, 51
Raby, F., vi, 1, 2, 3, 4, 5, 25, 29, 43, 44, 48, 52, 53, 107, 158
Richards, J., 15
Robinson, G.L., 19, 22, 24, 30, 31, 34, 48
Robinson, P., 19, 22, 24, 30, 31, 34, 48
Roblyer, 9, 10
Rodgers, T.S., 15
Rosen, E., 39
Ryan, R., 43
Scarcella, R., 32
Schmidt, R., 24, 32, 153
Schmidt, R.W., 24, 32, 153
Shearin, J., 32
Siemens, G., 28, 29, 52
Skehan, P., 20, 25, 27, 31, 32
Skinner, B.F., 8, 9, 10
Smith, B., 2
Son, J.-B., 2
Soubrie, T., 4, 36, 38, 50
Spada, N., 19, 24
Spiro, R.J., 26, 27, 51, 56, 74, 144, 146
Staddon, J., 9
Stern, H., 29
Stockwell, G., 1, 20
Swain, M., 17, 24, 30, 34
Swan, M., 45
Tanaka, S., 22
Terrell, T., 12
Tiene, D., 9
Todesco, A., 29
Tognini, R., 137
Tonks, S., 42
Toyoda, E., 2
Tremblay, P.F., 32, 43
Vallerand, R., 32
Van Lier, L., 31, 43
VanPatten, B., 7
Volet, S., 42
Vygotsky, L.S., 23
Wagner, W.W., 21
Warschauer, M., 22
Watson, J.B., 8
Weiner, B., 42
Westhoff, G.J., 32, 33
Wigfield, A., 42
Wilkins, D., 30, 34
Williams, M., 1, 32, 171
Williams, J., 7
Witten, I.H., 2
Wu, S., 2
Yaghi, H.M., 5
Yelon, S.L., 45
Zourou, K., 2, 4, 22

196
INDEX OF TERMS

Actional perspective, 22, 23, 27, 38, 39, 41, 45, 53, 176
Analytic syllabus, vii, 20, 27, 34, 35, 51
Appropriacy, 56, 76
Autonomy, 2, 5, 41, 104, 107, 108, 110, 133, 134, 135, 177
CALL tasks
cybertasks, i, iii, iv, 1, 44, 50, 177, 178, 181
Webquests, 1, 5, 50, 51
Cognitions, vii, 32, 51
Cognitive flexibility, 26, 27, 51, 74
Higher order skills, iii, 10, 26, 27, 50, 51, 52, 143, 149, 150, 179
Competence, iii, xii, 13, 14, 15, 28, 33, 37, 42, 56, 67, 77, 79, 81, 87, 89, 128, 129, 167, 177, 182
Creative competence, xii, 128
Instrumental competence, xii, 129
Cultural awareness, iii, 35, 48, 72, 120, 178
Digital literacy, iii, 23, 29, 46, 180, 182
First language, xiv, 13, 14, 15, 18, 25, 61, 62, 63, 70, 137
Genre, 22, 26, 44, 51, 56, 61, 62, 67, 77, 129, 153, 171, 176
Input, 11, 12, 14, 15, 16, 17, 18, 19, 24, 26, 30, 33, 34, 36, 48, 51, 61, 74, 160
Learning process, iii, viii, 1, 5, 15, 20, 21, 22, 23, 29, 31, 32, 45, 55, 62, 68, 74, 82, 83, 119, 133, 134, 142, 143, 178
Low-proficiency, iii, iv, viii, ix, x, xii, 4, 5, 10, 41, 44, 51, 52, 53, 56, 58, 67, 69, 75, 83, 85, 86, 87, 91, 109, 110, 111, 124, 125, 133, 136, 138, 141, 142, 150, 151, 153, 154, 164, 166, 167, 169, 170, 178, 180
Meaning, xiv, 9, 12, 14, 19, 22, 23, 25, 30, 35, 40, 42, 45, 137, 138, 140
Negotiation, iii, 19, 25, 111, 123, 137, 159, 182
Persistence, iii, 118, 153, 154, 179
Enjoyment, 43, 99, 118
Output, 17, 18, 19, 24, 25, 30, 36, 56, 61, 74, 154
Performance, i, iii, 5, 32, 46, 49, 53, 55, 58, 74, 146, 148, 161, 165, 177, 178, 180
Project, vi, vii, viii, ix, xi, xii, 1, 4, 22, 27, 38, 39, 41, 45, 51, 52, 53, 55, 59, 60, 61, 62, 63,
APPENDIX A

Dreamweaver step-by-step

CREER UN SITE WEB : MODE D'EMPLOI

Comme exemple, nous allons prendre une page créée à partir d'un flyer réalisé par une de vos camarades de classe lors d'une activité sur les 'Charities'. Regardez la page sur le navigateur. Cliquez sur Internet Explorer et allez à http://pagesperso.info/Charities/default.htm
Rédigez maintenant la fenêtre en cliquant en haut à droite.

1. CREER LES DOSSIERS

1.1 Ouvrez le logiciel Dreamweaver 4

1.2 Sur la barre d'outils en haut, cliquez sur Fichier → Enregistrer sous.
Seléctionnez le dossier de la classe (appelé 'échange'), et à l'aide de l'idée jaune à droite créez
- un dossier général que vous nommez english+your name(s)
- sélectionnez ce dossier 'english' et créez un sous-dossier que vous nommez charity

1.3 Cliquez sur ce dossier 'charity' et créez deux sous-dossiers, toujours à l'aide de l'idée jaune :

- Un que vous nommerez 'ressources'. Il contiendra les ressources nécessaires à la fabrication de votre site. Par exemple des brouillons de texte, des images à redimensionner ou à retoucher etc. C'est un dossier brouillon.

- Un autre que vous nommerez 'prodfini'. C'est ce dossier qui peut être transféré sur un serveur pour que votre site soit en ligne. Il contiendra le site (page d'accueil - qu'on appellera 'default' et les éventuelles autres pages que vous pourrez ajouter) mais aussi les images finales insérées dans le site. Pour plus de lisibilité, créez à l'intérieur de prodfini un sous-dossier 'images' qui contiendra les images telles qu'elles seront insérées dans le site (pour ce faire cliquez sur prodfini puis idée jaune).

Les dossiers sont maintenant créés.

1.4 Sur la barre d'outils en haut, cliquez sur site → nouveau site

Une fenêtre apparaît vous demandant le nom du site, appelez le Happy Children. En dessous cliquez sur l'idée jaune pour définir le dossier racine local. Sélectionnez le sous-dossier prodfini de charity. Cliquez sur OK

Le site ainsi que son chemin sont ainsi définis.

1.5. Le gestionnaire du site apparaît. Vous voyez à droite le dossier racine du site.

1.6 Fermez le gestionnaire en cliquant sur la croix en haut à droite.

1.7 Sur la barre d'outils, cliquez sur fichier → Enregistrer sous.
Sélectionnez le dossier prodfini de charity puis tapez le nom 'default.htm', c'est à dire le nom de la page Web que vous allez créer au sein de votre site. Cliquez sur OK

La première page (Web) du site est désormais enregistrée.

1.8 Enfin cliquez sur Modifier → Propriétés de la page. Tapez comme nom Happy Children Charity Fund, le titre que l'on souhaite voir apparaître sur la bande supérieure bleue de la fenêtre quand quelqu'un un accède à notre page d'accueil (ce peut-être tout simplement le nom du site ou un slogan ou les deux). Cliquez sur OK.

IMPORTANT : Pensez à enregistrer votre travail toutes les 10 minutes environ et à nouveau avant de quitter l'application.

[La prochaine fois que vous voudrez accéder à votre travail, ouvrez Dreamweaver, cliquez sur site → Ouvrir site puis sélectionnez Happy Children]
2. COMMENT PROCEDER APRES ?

Créer un site nécessite de prendre du temps pour réfléchir à la conception. La mise en page doit être pensée et préparée avant de passer à l'ordinateur. Pour cette fois, ce ne sera pas nécessaire, vous vous contentererez de reproduire un modèle, mais n'oubliez pas cette étape importante lors de la réalisation de votre propre site.

2.1 Comme vous le voyez sur la maquette de la page Web (voir dernière page), la mise en page est réalisée à partir de tableaux à l'intérieur desquels se trouvent d'autres tableaux, et cela autant de fois que nécessaire. Les cadres des tableaux sont invisibles sur la page Web mais vous pouvez bien sur les rendre visibles si vous le voulez.

2.2 Nous allons maintenant créer les tableaux, insérer les textes, l'image et les différents objets (boutons, cases à cocher, champs de texte).

3. FONCTIONNALITES DU LOGICIEL

3.1 La première chose à faire est d'insérer les tableaux. Nous commencerons avec le tableau du titre, très simple. Il s'agit d'un tableau à 1 ligne et 1 colonne (en fait un rectangle !). Sur la barre des tâches, cliquez sur Insertion → Tableau.

![Insérer un Tableau](image)

Comme nous n'avons pas besoin de changer les données, cliquez sur OK.

3.2 Placez maintenant votre curseur après le tableau ainsi créé et créez un paragraphe en appuyant sur la touche Entrée du clavier (attention, pour revenir simplement à la ligne sans créer de paragraphe il faudra appuyer en même temps sur Maj et Entrée).)

3.3 Insérez un deuxième tableau, pour le corps de la page cette fois. Celui-ci comportera 5 colonnes et 7 lignes. (Bordure: 0 signifie que les bordures ne seront pas visibles sur la page une fois ouverte avec le navigateur. Elles apparaissent pourtant en pointillés en mode création). Renseignez les champs correspondants sur la fenêtre et cliquez OK.

3.4 Le tableau, ainsi créé comporte 35 cellules (les cases du tableau) et le travail du concepteur consiste à renseigner ces cellules, à insérer du texte, des images, bref des objets. Chaque cellule est autonome et a ses propriétés propres : police, taille, couleur etc. Ces propriétés sont visibles grâce à une petite fenêtre qui s'ouvre quand vous cliquez sur Modifier → Propriétés de la sélection.

Cette fenêtre vous donne les propriétés de la cellule sur laquelle se trouve votre curseur.

3.5 Placez le curseur dans la cellule qui se trouve colonne 1/ ligne 2 et insérez un tableau imprimé qui contiendra le sommaire du site envisagé, comme vous le montre la maquette (même procédure que précédemment insertion → Tableau). Celui-ci a 1 seule colonne et 5 lignes.

3.6 A nouveau, créez un paragraphe après le tableau et insérez un troisième et dernier tableau indépendant, le même que le premier (Points 3.2 puis 3.1 à nouveau).

3.7 Placez votre curseur dans cellule du premier tableau et affichez les propriétés de la sélection (cliquez sur Modifier → Propriétés de la sélection). Renseignez les champs comme indiqué sur le modèle ci-
dessous et tapez le texte. Comme il s’agit de la cellule contenant le titre de la page, la taille et la couleur de la police sont inhabituelles (taille 5 et couleur rouge) et le texte est centré.

3.8 Les principales fonctionnalités du logiciel

- Insérer une image : Insertion → Image (l’image aura été au préalable captée sur Internet, scannée ou autre, et enregistrée dans le dossier ressources). Une fois éventuellement rétravaillée aux dimensions voulues elle est enregistrée dans le dossier images de profilini.

- Insérer un lien hypertexte : Sélectionner le texte à lier avec. Puis Modifier → Propriétés de la sélection,
 a) Si le lien doit renvoyer à une page de votre site : placer le curseur sur la cellule contenant le mot lien par ex. 'countries' et puis renseigner les champs lien en tapant countries.htm, en supposant que la page countries.htm est cette page de profilini à laquelle on veut renvoyer.
 b) Le lien peut aussi renvoyer à un autre site Internet, dans ce cas taper l’adresse complète du site dans le champ par ex. http://www.schtoumpff.com
 c) Enfin il est possible qu’il renvoie à une adresse e-mail, dans ce cas faire précéder l’adresse de mailto: par ex. mailto:duchnoc@bidulfrunc.com

- Insérer une ancre : L’ancre permet par exemple d’accéder directement une partie de la page sans avoir à la rechercher manuellement. Sur notre modèle, nous en avons une en bas de page appelée ‘Back to top’.

 b) Placez maintenant le curseur sur ‘Back to top’ que vous avez écrit en bas de page et comme en 3.8.2, renseignez les champs ‘lien’ en tapant ‘#top’.

- Insérer un bouton, une case à cocher, un champs texte : Insertion → Objet de formulaires

- Insérer une barre horizontale : Insérer → Barre horizontale. Renseignez le champ en % de ce que vous souhaitez pour la longueur (100% signifie que la barre fera toute la largeur de la cellule). Pour l’épaisseur du trait, renseignez H en pixels (essayer différentes épaisseurs jusqu’à celle voulue).

- Modifier les tableaux : Vous pouvez fusionner les cellules, en ajouter ou en supprimer en cliquant sur Modifier → Tableau

- Enfin pour modifier des propriétés concernant la page entière, cliquez sur Modifier → Propriétés de la page, vous pourrez entre autre définir la couleur ou une image d’arrière plan, choisir la couleur des liens etc.

- A tout moment vous pouvez visualiser l’effet de votre page sur un navigateur en tapant sur la touche F12

- L’aide de Dreamweaver est disponible grâce à la touche Ctrl+F1

... et surtout n’oubliez pas d’enregistrer régulièrement votre travail !

ET C’EST TOUT 😊
HAPPY CHILDREN
helping children in more than 50 countries
around the world.

28/1/03

News in brief

How can your £1 a month help children and give them some hope?

In Algeria £1 a month will help a lot of children to have a better life.

With your donation we buy books in order to teach children how to read.

We send 50 teachers every month to various countries to educate children and teach them how to be self-reliant.

Giving form

Yes, I want to make a gift to HAPPY CHILDREN of £1 a month.

Please complete the following details:

Title
Mr
Mrs
Miss

First name

Last name

Account number

Send in the information
Submit

Search

Together we can change their life

Back to top
APPENDIX B

Screen capture of the project homepage
APPENDIX C
Preliminary task #1

In your ‘English’ folder, create a ‘press’ folder and then save this word document as worksheet.doc after typing in your answers.

Worksheet: Description and analysis

Below is a list of British national dailies with the date they started, their political orientation and circulation figures:

- **The Daily Star** (1978 - tabloid - Conservative - 670,000)
- **The Daily Mirror** (1903 - Generally pro-Labour - 2,320,000)
- **The Sun** (1964 - tabloid - before 1974 Labour, then very Conservative - 3,713,000)
- **The Daily Mail** (1896 - tabloid - Conservative - 2,295,000)
- **The Daily Express** (1900 - tabloid - Conservative - 1,168,000)
- **The Financial Times** (1888 - broadsheet - Pro-Conservative - 353,000)
- **The Daily Telegraph** (1885 - broadsheet - very Conservative - 1,073,000)
- **The Times** (1785 - Pro-Conservative - centre-right - 787,000)
- **The Independent** (1986 - broadsheet - independent, neutral - 220,000)
- **The Guardian** (1821 - broadsheet - rather critical, left of centre - 402,000)
- **The Morning Star** (British Marxist daily newspaper; started in 1930 as the daily of the Communist Party of Great Britain)
1 Let’s calculate:

a) Look at the circulation figures: How many newspapers are sold every day?
b) If you compare to the total British population (about 60 million) that is one daily newspaper for every ______ Britons on average.
c) Would you say this is more or less than the ratio in France?
d) Are older newspapers more left or right-oriented?

2 Now have a look at 4 British newspapers Websites, then identify for each of them:

<table>
<thead>
<tr>
<th>Name</th>
<th>Newspaper 1</th>
<th>Newspaper 2</th>
<th>Newspaper 3</th>
<th>Newspaper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>tabloid / broadsheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homepage layout</td>
<td>lots of headlines? long/short descriptions? main article printed in full? etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of written text and visuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+nature of visuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main sections of the newspaper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>news / money / weather / arts / politics / travel ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Select a leading article on a current event and analyse how the same subject is dealt with in 2 different newspapers (tabloid and broadsheet) using the following table:

<table>
<thead>
<tr>
<th>Newspaper</th>
<th>TABLOID</th>
<th>BROADSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>where the article appears</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>what it is about</td>
<td></td>
</tr>
<tr>
<td>Headline</td>
<td>how our attention is caught</td>
<td></td>
</tr>
<tr>
<td>Opening sentence</td>
<td>how the article starts</td>
<td></td>
</tr>
<tr>
<td>Visual description</td>
<td>what we see</td>
<td></td>
</tr>
</tbody>
</table>

You may use the following guidelines.

E-link to support documents, i.e. Appendix E in this thesis.

Write a short conclusion on how the same event is related in the two articles:
The British Press: what a scandal!

In class-obsessed Britain, even the newspapers divide into an upper, middle and lower class. At the bottom of the pile come two newspapers – The Mirror and the Sun. Their detractors call them the gutter press, the lowest of the low. But out of the UK’s ten national daily newspapers, these two papers sell more than all the rest together. On a good day they sell more than all of France’s 35 newspapers – national and regional – combined.

Britain is a nation that loves its newspapers; where buying a paper (or, indeed, having it delivered at dawn to your door) is as much part of the morning ritual as brushing your teeth. Here good journalism means exciting journalism. The British do not read papers simply to get a fuller version of the events that were covered on TV the night before; they want to be told something new. Where the French expect depth of information from their papers, the British expect drama.

Everyone agrees that the Mirror and the Sun are the most dramatic newspapers, but most would say that this is because they sensationalize the news. In fact, compared with France, all British newspapers sensationalize the news – there are differences of style between the broadsheets and the tabloids, but everyone looks for a new, emotional angle on a story. The gutter press are simply more honest about it. Stylistically, the vocabulary they use is conversational rather than literary.

Andrew Pennman, for his part, makes no apologies for the Mirror’s approach to the news: "I am proud of the fact that we are vastly more successful than the broadsheets," he says. "
They say that’s because we *pander* to the lowest common denominator, but I’d say it’s because we’re better journalists. Most broadsheets have a terrible writing style. We use spoken English – we say what we say better”

The practice of paying for information – known as “cheque-book journalism” – is another aspect of the tabloids that many see as morally unacceptable. In reality, all newspapers do it. The tabloids, however, can pay more because they are financially successful. Once they have a story, they pursue it – often *prying* deep into the subject’s private life. Many of their “victims” see their career and home life ruined – 20 politicians resigned after newspaper exposés.

But if the gutter press has some of the best journalists, and they set the news agenda for other papers, why don’t they get more respect? Well, there may be one other thing that makes people look down on these papers, something typically British. If the newspapers have upper and lower classes, it is because British society does too.

By Rupert Morgan, adapted from Today in English, October 1999

A gutter = *un caniveau* / dawn = very early in the morning / to pander = to try to satisfy / to pry into = to inquire too curiously

Comprehension worksheet

❖ **SCANNING**

What are the two types of newspapers this text deals with? Describe the main characteristics of each?

What types of newspapers are *The Sun* and *The Mirror*? What is the other name given to this type of newspaper?

Find words and expressions to illustrate the title: “What a scandal!”
What do French and English readers expect from a newspaper? Justify by quoting from the text.

WORDS

Find all the words and expressions in the text associated with broadsheets, tabloids, or both.

Make as many words as you can with the following nouns, using prefixes or suffixes:

Class drama success nation sensation

READING BETWEEN THE LINES

What does the author of the article mean when he says: "the Mirror and the Sun are the most dramatic newspapers"?

How are these two newspapers considered? Why are they so controversial?

What do you understand by: "we pander to the lowest common denominator"?

What is "cheque-book journalism"? What can be the consequences of such a practice? What do you think about it?
Find out the point of view of the journalist on the "gutter press". Is it representative of the general opinion in Britain?

Explain why the journalist compares British society with its press?
APPENDIX E
Support documents (print or online)

Document 1

Basic structure of an article

The **headline** usually answers these two questions. Who was involved? What happened?

Who? What?

The section of an article that carries most weight is the beginning; you, the reader, must be able to establish what the article is about from the start or you may lose interest — the headline is all-important!

First or lead paragraph usually answers the questions: Who was involved? What happened? When did it happen? Why did it happen?

Who? What? When? Why?

Body of article will provide most details necessary for a clear understanding.

How?

The last paragraph will include spokespeople, eyewitness reports or reports from people involved.

Less important details
3 HELD OVER 'ROGUE HEROIN' DEATHS

Police yesterday arrested three men in connection with the death of a drug addict, as it emerged that the rogue heroin which has claimed the lives of addicts across Britain and Ireland may have killed three more people.

At least 31 people in Scotland, Ireland and the North-west have died after injecting heroin contaminated with a bacterium found in soil. But over the weekend West Midlands police said they feared the contaminated narcotic could have claimed three more lives in the Wolverhampton area.

The body of Derek Anderson, 45, was discovered in Wolverhampton on Saturday. Detectives investigating the death were last night questioning two men on suspicion of murder and one on suspicion of supplying heroin.

Officials believe the deaths are caused by addicts missing veins and injecting into muscles or other tissue. The acid in which the heroin is dissolved burns a hole in the muscle which allows the bacterium to thrive. It then produces its own deadly toxin and multiple organ failure often ensues.

A spokesman for Greater Glasgow health board said it was too early to confirm that the three deaths in Wolverhampton were linked to the other rogue heroin deaths. "Those deaths are still being investigated to establish if they are linked to the Glasgow and Dublin outbreaks."

The Guardian, Mon. 12 June 2000
Reading an article

1 - Identify.
- What type of readership? (adults, housewives, educated, teenagers, ethnic minorities)
- Political tendency? partisan / non-partisan newspaper.
- Type of article? an editorial / a leading article / a comment...
- Study the headline (sensational? puns? made to tease? to shock?) and the subhead.

2 - Situate
- Does it relate to history? geography? science? sociology? economics? politics?
- References to the past? to the future? (watch the tenses, the time markers)

3 - Describe and analyse
- The layout
- Ratio of written text and visuals (drawings, photos, diagrams, charts)
- Is it to be read from top to bottom? left to right? diagonally?
- Textual signs: typography, punctuation, italics, capital letters, paragraphs, blanks, use of colour.

4 - Find out about the voices and points of view
- Who is speaking? to whom? what for? and how?
 Analyse the choice of words (modal auxiliaries, adverbs), the organisation of paragraphs and their structure (links words), the tone (irony, humour)
 Pay attention to cultural references.
- Is it informative? investigative? argumentative?
- How does the journalist manifest himself in the text?
 Are the comments clearly presented as such or does the journalist present as a fact what is an opinion?
- Who are the persons quoted? names, positions, jobs, places of work, other type of information; age, useful of superfluous? Why are they quoted (as experts / witnesses)?

5 - The journalist's aim is to:
- Infor
- Entertain
- Investigate
- Influence public opinion
- Spread a message, argue, criticise, express disagreement
- Prompt the reader to think about an issue
- Prompt the reader to act, sign, get involved, boycott
- Influence the reader

back to worksheet
SHOULD WE BELIEVE EVERYTHING IN THE NEWSPAPER?

It is the newspaper's responsibility to find the facts for its readers. Every article, story and report should be completely objective.

However, many people feel that our newspapers have become politically or ideologically biased.

The best way to use a newspaper and get as much accuracy out of it as possible is to vary your news sources. Read two or more different papers, news magazines, and utilize other media for the "total picture." An informed person needs more than one source of news.

Newspapers today seem to be concentrating on entertaining as much (if not more) as informing.

THE EDITORIAL

Who are some of the people that express their opinions on the Editorial pages?

The editor expresses the newspaper's opinions on local, national and international issues. In a democratic society the editorial content is not controlled or influenced by the government or any military force.

Another person who expresses his or her opinion is the political cartoonist. The cartoonist does it with humor, satire, and often in a sardonic manner.

The Editorial section allows journalists to share ideas and opinions with their fellow citizens. Keep in mind that a well-written editorial uses facts along with opinions to support and give credence to any argument or position and guide readers into agreement or at least respect.
THE LAYOUT

...is the arrangement of headlines, body type, photos and other elements on a newspaper page so as to achieve the best communication of a given message.

Many newspapers now have developed a color palette that defines the look of a newspaper.

Graphics that can draw readers into stories, or provide readers with information that can be digestible at a glance. They serve as entry points into a story.

Some useful tips

1. Put the flag (= logo) at or near the top.
2. Use the top right as the key spot.
3. Use the top left as the second best spot on the page.
4. Let stories descend in value as they move down the page.
5. Let headlines descend in size as the descend on the page.
6. Vary headline arrangements.
7. Body type should remain under the headline.

THE FRONT PAGE of a paper edition

The front page is like the cover of a magazine and often helps sell the paper at the newsstand.

The front page of the paper has its name in large bold print at the top. Beneath the name is the number of years in print or volume number along with the edition number for the current year. The price and sometimes the weather forecast are also near the top of page one. Many newspapers print announcements of highlighted articles for the edition and their page numbers at the very top of the page. The city or town of publication is also printed.
Newspapers and Journalism

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>article</td>
</tr>
<tr>
<td>2</td>
<td>broadsheet</td>
</tr>
<tr>
<td>3</td>
<td>caption</td>
</tr>
<tr>
<td>4</td>
<td>censor</td>
</tr>
<tr>
<td>5</td>
<td>chequebook journalism</td>
</tr>
<tr>
<td>6</td>
<td>correspondent</td>
</tr>
<tr>
<td>7</td>
<td>critic</td>
</tr>
<tr>
<td>8</td>
<td>desk</td>
</tr>
<tr>
<td>9</td>
<td>edit</td>
</tr>
<tr>
<td>10</td>
<td>editor</td>
</tr>
<tr>
<td>11</td>
<td>editorial</td>
</tr>
<tr>
<td>12</td>
<td>exclusive rights</td>
</tr>
<tr>
<td>13</td>
<td>feature</td>
</tr>
<tr>
<td>14</td>
<td>front page</td>
</tr>
<tr>
<td>15</td>
<td>headline</td>
</tr>
<tr>
<td>16</td>
<td>journalist</td>
</tr>
<tr>
<td>17</td>
<td>media</td>
</tr>
<tr>
<td>18</td>
<td>opinion</td>
</tr>
<tr>
<td>19</td>
<td>paper</td>
</tr>
<tr>
<td>20</td>
<td>story</td>
</tr>
<tr>
<td>21</td>
<td>tabloid</td>
</tr>
</tbody>
</table>
SUGGESTIONS

About the sections in your newspaper / news Website

Newspapers usually have a number of different sections according to their style and type: Business, Famous people, Sports, Politics, Weather forecast, Comment, News, Current affairs, International news, Astrology etc...

Readers may contribute their opinions and feelings with the following sections:

Letters to the Editor: These letters are written to express, inform and correct the newspaper's readership about issues of concern.

Viewpoint: people have their opinion or response to a particular "question or issue of the day" printed along with their photographs.

Forum: allows for an expert or professional in a particular discipline or field to comment on some aspect of their area of expertise.

About your newspaper articles / editorials

In your article, you may want to relate an event that is about:

- a film festival
- rave parties
- real TV
- a trip to the Moon
- an encounter of the third type
- a new technology
- a new vaccine
- a terrorist attack
- the death of a Queen
- an actor for President
- the first human clone
- etc…
APPENDIX F

Evaluation Criteria

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Sections, articles and editorial are irrelevant and/or very limited</td>
<td>The details of the homepage are incomplete or contain minor errors</td>
<td>Content is highly relevant. Effort has been made to add to the minimum requirements in an appropriate way</td>
</tr>
<tr>
<td>Language use</td>
<td>Sentences are broken and confusing. They contain many significant errors that prevent understanding</td>
<td>Sentences contain minor errors. They are clear but repetitive or simplistic</td>
<td>Sentences are clear and varied. Vocabulary is rich and appropriate</td>
</tr>
<tr>
<td>Pair work</td>
<td>The student failed to participate actively in the project</td>
<td>Participation from the student was deemed satisfactory</td>
<td>The student represented an important asset and contributed greatly to the group</td>
</tr>
<tr>
<td>Use of Dreamweaver</td>
<td>Dreamweaver was thrown together sloppily</td>
<td>Satisfactory but limited use of software</td>
<td>Proficient use of Dreamweaver</td>
</tr>
<tr>
<td>Creativity</td>
<td>The homepage exists but little thought or effort has been put into it</td>
<td>It is obvious thought and time have been put into the web page</td>
<td>Creativity was exceptional and the project is brilliant!</td>
</tr>
</tbody>
</table>
Hello, thank you for answering this questionnaire. A researcher is available in the classroom to help you fill it out. Do not hesitate to ask any questions you may have. And feel free to add comments or remarks to your answers.

PART 1 – About Me

Please note:
A few questions require that you say whether you like or do not like something. You must answer either yes or no to these questions, ticking the appropriate box.

Example 1: In answering this question below, you tick either yes or no otherwise your answer would make no sense.

13/ I have already worked on a computer in the computer room.
 □ yes
 □ no
 If yes, in which subject(s): ...

Example 2: Here however, you may tick both answers because you may have liked some aspects of this type of work and disliked others.

 a) □ I have enjoyed this type of work because:
 ..

 b) □ I have not enjoyed this type of work because:
 ..

13 The following questionnaire was administered to the students in their L1 (French). It is translated for the purpose of the thesis only.
School:
Age: years old
Sex: □ Female
 □ Male

❖ Me and computers

Tick the correct answer
1/ I have a computer at home:
 □ yes
 □ no (go to question n°4)

If yes:
 □ It is my own
 □ I share it with other members of my family

2/ I have several computers at home
 □ yes
 □ no

If yes, how many?

3/ I have an Internet connection at home
 □ yes
 □ no

4/ I know how to use a computer:
 □ mostly yes
 □ mostly no

If mostly yes, I have used it for:
 □ less than six months
 □ more than six months but less than one year
 □ more than one year but less than two years
 □ two years or more
5/ I have learned how to use a computer: *(You may tick several boxes)*
 - [] at school
 - [] with my family
 - [] with friends
 - [] with specialized books
 - [] other: (specify)

6/ Outside school, I usually use a computer: *(You may only tick one box)*
 - [] every day
 - [] two to three times a week
 - [] once a week
 - [] less than once a week

7/ Each time I use a computer, I spend an average of:
 - [] less than a quarter of an hour
 - [] more than a quarter of an hour but less than half an hour
 - [] more than half an hour but less than one hour
 - [] between one and two hours
 - [] more than two hours

8/ I mostly use computers:

<table>
<thead>
<tr>
<th></th>
<th>Almost never</th>
<th>Rather rarely</th>
<th>Rather regularly</th>
<th>Very often</th>
</tr>
</thead>
<tbody>
<tr>
<td>At home</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At a friend’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At school</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In a cybercafé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

222
9/ With a computer, I mostly use:

<table>
<thead>
<tr>
<th></th>
<th>Almost never</th>
<th>Rather rarely</th>
<th>Rather regularly</th>
<th>Very often</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational softwares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Games</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Web search</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School-related Web search</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail, chat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>photo/audio softwares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10/ To me, the Internet is:

Tick the appropriate box for each situation:

<table>
<thead>
<tr>
<th></th>
<th>In my personal life</th>
<th>In my school life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indispensable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very useful</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not very useful</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How I perceive myself with regards to computers

11/ With regards to computers, I generally: (you may only tick one box)
- feel perfectly at ease
- manage quite well
- can sort myself out with some effort
- am hopeless

12/ I know how to use:
Tick the appropriate box for each programme

<table>
<thead>
<tr>
<th></th>
<th>Not at all</th>
<th>A little</th>
<th>Well</th>
<th>Very well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers in general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet explorer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, specify:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work with computers at school

13/ I have already worked on a computer in the computer room:
- yes
- no, never

If yes, in which subject(s): ...

...
a) □ I have quite liked this type of work because:
..
..
..
..

b) □ I have not quite liked this type of work because:
..
..
..
..

* Groupwork at school *

14/ I have already done groupwork with two or three pupils: *(outside computer classes)*

□ yes
□ no, never

*If yes, in which subject(s): ...
..
..
..

a) □ I have quite liked this type of work because:
..
..
..
..

b) □ I have not quite liked this type of work because:
..
..
..
..
PART 2 – About the project

You are soon to create the homepage of a news Website:

15/ I feel like doing this kind of work:
 □ not at all
 □ less than usually
 □ as usual
 □ more than usually
 □ very much

16/ I think working collaboratively:
 □ will help me progress a lot
 □ will help me progress moderately
 □ will not help me progress much
 □ will not help me progress at all

17/ The fact that my work will be published online:
 Number your answers, 1 = most important
 □ is a source of additional effort
 □ is a source of additional enjoyment
 □ is a source of stress
 □ has no impact on me

18/ The fact that my work will be marked by the teacher:
 Number your answers, 1 = most important
 □ is a source of additional effort
 □ is a source of additional enjoyment
 □ is a source of stress
 □ has no impact on me

14 The questionnaires used in the paper groups read “the front page of a newspaper”.
15 This question was not included in the questionnaires used for the individual groups.
16 The questionnaires used in the paper groups read “exhibited in the school”.
You may have additions to make to complete your answers to the above questions. Use the space below for this purpose:

19/ And to finish, I would like to add:

..
..
..
..
..
..
..
..
..
..
..
..

Thank you for your cooperation.
Hello, again we request your collaboration. This last questionnaire summarizes your impressions after completing the project in class. Your answers will help teachers improve this type of class work.

You have created the homepage of a news Website:

1/ I have enjoyed this type of work:
 - □ not at all
 - □ less than usually
 - □ as usually
 - □ more than usually
 - □ very much

2/ I think working on a computer:
 - □ has helped me progress a lot
 - □ has helped me progress moderately
 - □ has not helped me progress much
 - □ has not helped me progress at all

The following questionnaire was administered to the students in their L1 (French). It is translated for the purpose of the thesis only.

The questionnaires used in the paper groups read “the front page of a newspaper”.

This question was not included in the questionnaires used in the paper groups.
3/ I think working collaboratively20:
 \begin{itemize}
 \item \(\square \) has helped me progress a lot
 \item \(\square \) has helped me progress moderately
 \item \(\square \) has not helped me progress much
 \item \(\square \) has not helped me progress at all
 \item \(\square \) will not hinder my work
 \end{itemize}

4/ The fact that my work was going to be published online21:
 \textit{Number your answers, 1 = most important}
 \begin{itemize}
 \item \(\square \) was a source of additional effort
 \item \(\square \) was a source of additional enjoyment
 \item \(\square \) was a source of stress
 \item \(\square \) had no impact on me
 \end{itemize}

5/ The fact that your work was going to be marked:
 \textit{Number your answers, 1 = most important}
 \begin{itemize}
 \item \(\square \) was a source of additional effort
 \item \(\square \) was a source of additional enjoyment
 \item \(\square \) was a source of stress
 \item \(\square \) had no impact on me
 \end{itemize}

6/ During this project22...
 \begin{itemize}
 \item a) \(\square \) I have enjoyed working in the computer room, because:
 \hfill
 \item b) \(\square \) I have not enjoyed working in the computer room, because:
 \hfill
 \end{itemize}

20 This question was only included in the questionnaires used in the collaborative/paper group.
21 The questionnaires used in the paper groups read “exhibited in the school”.
22 This question was not included in the questionnaires used in the paper groups.
7/ During this project...

a) ☐ I have enjoyed working collaboratively, because:
..
..

b) ☐ I have not enjoyed working collaboratively, because:
..
..

8/ During this project, I feel our collaboration worked:

☐ very well
☐ mostly well
☐ mostly badly
☐ not at all

9/ I feel I have reached the objective I set out for myself:

a) ☐ yes, because:
..
..
..

b) ☐ no, because:
..
..
..

23 This question was only included in the questionnaires used in the collaborative/paper group.
24 This question was not included in the questionnaires used in the individual groups.
10/ Eventually I can assess my work in the following way:

a/ Quality of my English:
(compare with what you normally achieve in your essays)

- better than usually
- about the same
- not as good
- much worse

b/ Graphic illustrations and design:

- very good
- good
- average
- bad

c/ Norms and rules for the creation of a homepage:

- very good
- good
- average
- bad

11/ I experienced difficulty in completing this task:

- yes
- no

If yes, because of:
(Number your answers, 1 = most important)

- lack of time
- lack of knowledge in English
- lack of technical knowledge (computer)
- lack of knowledge on the press
- lack of interest

25 The questionnaires used in the paper groups read “newspaper front page”
I would like to do this kind of work again:

- yes
- no

Yes, but: make suggestions to improve things

No, because: explain why you do not want to do it again

Thank you for your cooperation.
APPENDIX I

Exemplars of students’ products
HERE THEY COME

Today, it is the first day of the football season. Teammates for the third time explained their part. They began the first day for a long time. All the stars of football will be present. There will be for the tournament. In the distance, the winners and the French team. The bets are open...

Individual/paper setting (exemplar 2)
THE DAILY TRUTH

THE NEW FRENCH BEAUTY QUEEN
FRENCH MISS HAS BEEN THE 50TH SINCE

THE CREATION OF THE COMMITTY

Her name is Dadda Breger, she is 23, 1.73
and she is our choice.

December 3rd, she had
been elected among forty-six young girls and
have received the cream from the head
of Coco Rocher, the
French queen.

It was from the
demure International
model where Jean-Paul
Gouault was the
master of ceremony. Young girls
took one and walked in, every girl
in traditional clothes, even suit
and evening dresses created by
Robert IDI NABER, one of the
famous designers of the Jet Set and
middle East - France.

The jury was composed of Edwige
Boschini (Miss France), and Miss
Emmanuelle, 2001, Jack Lee, Luce
Tabian, Gaeta, Patricia Ras,
Nikes Aliagas, Patricia George
(miss France 2003). Liliane and
Liliane Kavanagh, their wife
influenced for 203.

"As the new French beauty,
Dadda Breger will have an
excellent year. Good luck,
beautiful girl!"

D. Rodriguez, the
Daily Truth

Individual/ICT (exemplar 1)
During the holidays, there are many party times which unroll anywhere as in the beach.

First, in the world there are many places where party time all the time, such as Ibiza. In fact, it's the must place to do a big party, there many girls and boys who are dancing on the house/trance music.

Second, youngsters drink lot of alcohol with an aim of better having fun but in the real fact when a youngster drink alcohol it's necessary to stay in the place. I think the organiser of any party should set up a means of safety to prevent the young people of driving when they drank. Moreover we can see in the world different party, in fact the topic changes according to the culture of the organizing country.

To conclude, I think it's necessary to have a party which is organized and so the party will unroll without problem and in the best conditions.
The shocking newspaper

The newspaper which tells the truth

Nowadays, racism still kill people

It's the same shit all over the world!

Yesterday's night, racism has made another victim. A young girl aged of 22 years old has committed suicide because she wanted to marry her boyfriend but her parents disagreed with this decision simply because her boyfriend was an Algerian.

Nowadays, more and more peoples are killed or attacked just because they don't have the same origin. It's very dramatic and shocking. Where is the equality? humans right?

Employment Discrimination laws seek to prevent discrimination based on race, sex, religion, national origin, physical disability, and age by employers.

It's not normal that people are judged just by their appearance and the government must do something to stop this violence. Today people dead due to this inequality but what did we do?

Today, 5 young students are arrested because they have drug.

People can see the film 'Pirate of carab'.
America and Saddam

In Britain, the British health education authority made a low specializing anti-smoking campaign which allows children to sue their parents.

“The struggle against the AIDS”

Nelson Mandela organized two weeks ago a big concert. For the research against the AIDS, he invited lots of celebrity like Beyonce. This concert has succeeded and brought some money to try to make progress.

“A new HERO”

He saved two children in a dangerous fire. It happened in an elementary school called “King school.”

Join the AA and get a £10 M&S voucher.

Join the AA before 15th November 2003 and you could receive a £10 M&S voucher! Call the number below to join now and claim your free voucher.

Chopard

For information on delivery, or to subscribe in France, call: 00 800 44 49 78 27
INTERNATIONAL NEWS

A SERIAL KILLER ARRESTED

CHAMPION OF THE WORLD
The French women are champions of the world in hardball. In
final they won against the
Russia during extra time.

A DISTURBED MAN
A man committed suicide
after killing his ex girlfriend
and their baby. Nobody knows
the reason of this horrible act.

BURBERRY

239
BATH's Miniature Life
A newspaper with just news item

News item
- Bath (pages 2 to 5)
- Local economy (pages 6 to 9)
- Health (pages 10 to 13)
- Sports (pages 14 to 17)
- Culture (pages 18 to 20)

Agenda
- Spectacle's program (page 21)
- Concerts (page 22)
- TV (page 23)
- Radio (page 22)

Local weather forecast (page 24)
Small ads (page 25)
Plays (page 26)

Water's kindness (page 18)
Entry-hill's library organize this week an exposition about the beneficial effects of roman baths.

Young people's left to themselves (page 10)

An important flu epidemic arrives by school's teacher in Fox-hill.

"Sad Friends" (page 22)
This new group has filled Estonia population with admiration. Their concert was a real success.

In the heart of the nation.

Great party in Entry-Hill's Old People's Home (page 2)
Mister Scott has celebrated his hundredth birthday yesterday. Everybody was relieved to their worries and happy thanks to this events. There are four hundred-years-old in Bath now.

Unhappy birth (page 12)
A woman has delivered in Fox-hill's hospital a stillborn baby. He was premature and his mother is ill now.
EDITORIAL

A successful school exchange

Within the scope of a school exchange, fifteen French students spent the last week in Bath. They were all the time with their penfriends' family. They visited the area and also they were very at school with their penfriends. Such a great success was unexpected. It was very worthwhile experience. It allowed young people better understand each other and the foreign culture. Even if they are not from the same country, it's a good way to increase racism. Children in the end find out that they have a mutual like, they make friends, they go to school. They spend time with their family, they enjoy playing sport. Now, they know about the major differences between them in the language. It also represents a difficulty to communicate. In the end they have spent all together and helped them to learn language. My simply school environment and classes, and with pleasures and entertainment.

Congratulations to the two penfriends, who communicate two huge languages.

GMU Academy

Meetings in Europe

In Tuesday, 23 June, 2023, lots of students were graduated from secondary school and they went on holiday. Not again, some of them will go an universities but others a paid position. It’s great. So everyone had to be very best reading assignments and so teachers have organized a great manifestation. A great share of population were present. Teachers and thus to have better looking so students. This manifestation started three day demonstrations back over the school but the authority understood lots of negotiations are done with the population but a high ratio of parents weren’t satisfied about it they would like teachers more qualified and better premises but financial abnormal would not allow. And this conditions, so student’s parents organized demonstrations. Since this month, the working conditions at the university have slightly improved.

Waran Isabelle

They were a thousand parents to manifest.
Dear readers,

News Cleeck want to thank you for your fidelity. We're sorry for the last magazine, which was published two days later because of a problem with the print. That's the reason why we offer you five special pages about celebrities. We want to inform that James O'Konner, the journalist who writes articles about celebrities, is father to three days.

We're very proud to be your favorite newspaper and we hope that you will stay faithful to News Cleeck. We wish you a happy New Year 2004.

Good reading. I hope that you're satisfied about News Cleeck and see you later.

Norah Jones in concert in London on Monday the 19th, 2004 at 9:00 p.m.

SPECIAL TRAVEL TO ISLAND FOR THREE EUROS

NEWS! NEWS!

NEW PUB J Lo work for Ligne Roset

Monica Bellucci is in it!
NEWS CLEECK

Monica Bellucci enters to the Grévin museum

Actually in the movies "Matrix revolutions" and "Remember me", the Italian actress Monica Bellucci will enter, in 2004, into the Grévin Museum.

Monica Bellucci will have its wax double. The Italian actress, was retained unanimously by the Academy of the Grévin Museum, headed by Bernard Pivot, who chooses each year the personalities boarder of the famous Parisian Institute.

Monica Bellucci will thus make its entry in the Museum during the year 2004. She will be soon with the poster of Secret agents at the sides of her companion Vincent Cassel, of Brothers Grimm face to Matt Damon, Heath Ledger and Robin Williams, and The Passion of Christ of Mel Gibson.

James O'Konnor, News Cleeck, 19.01.04.

To win a travel, buy a tombola ticket for just three euros!
ZIDANE PLAYER OF THE YEAR FOR F.I.F.A.

Real Madrid playmaker Zinedine Zidane won the 2003 FIFA World Player of the Year, Monday afternoon at Zurich, in Switzerland. He won 264 points from the votes cast by 142 national team coaches. He beat off the challenge of Arsenal, Thierry Henry, who was favourite, and his Brazilian friend, Ronaldo. Zidane was voted in first place by 35 coaches. Henry was voted by 21 coaches and collected 186 points, while Ronaldo was voted by 26 coaches for a total of 176 points.

With this success, Zidane equalled Ronaldo in winning the award three times. There are the only three times winners of this award since it began in 1991. It's the third consecutive year that a Real Madrid player won this award after Luis Figo's victory in 2001, and Ronaldo last year.

Football:

TREZEGUET AT CHELSEA?

The French World Champion could go in Chelsea at the Mercato's

Ronaldinho, Zidane and Henry at the ceremony.

Zinedine Zidane, the winner, with his award

Thierry Henry, who did a great season with Arsenal

Sunday at Zagreb in Croatia
On Monday afternoon, Zinedine Zidane was elected player of the year by FIFA. This was not a real surprise. Indeed, this year was a great year for the child of the Castellane, with a victory in Liga, and a semi-final of Champion's League.

The "Bleus"'s playmaker, proceeds on the podium another French man, the Gunter Thierry Henry. Inspite of a fantastic year, the young goal-scorer only won the Confederation's Cup with France, and finished second of the Premiership. But what can we say about this spectacular virtuoso with striking accelerations which would have left Carl Lewis standing, and with a hall strike which would frighten Mike Tyson!

On the third step, we find an other Real Madrid's player, the Brazilian Ronaldo, who shone once more by his spectacular goals, and his strike accelerations, which allowed Real Madrid to win the Championship. It's a real satisfaction, and a true pleasure to see him running and become an exceptional goal-scorer again, as he was before his terrible injury.

Finally, in the worst place, we find the new Gold Ball "France Football", the Czech Pavel Nedved, who had an exceptional season with Juventus.

This classification rewards the offensive game with three offensive players in the first three places, and this appears really logical. But we could feel that an inversion of the two first places and to see Pavel Nedved on the podium could be merited.

Zidane is Zidane, and every coach dreams to have a wizard in his team, especially someone as gifted as the 98 World Champion. However, there is only one Zidane ...

18th December 2003
By Cyril Amunet
NEW GENERATION

REAL TV

TELECASTS OF REAL TV ARE FASHIONABLE AT THE MOMENT. THERE ARE MORE LOOK, MAINLY BY CHILDREN. ARE THERE GOOD ENTERTAINMENT OR ON THE OTHER HAND ARE THERE HARMFUL?

FASHION

I THINK THEY CAN BE A GOOD ENTERTAINMENT IF THEY ARE TAKEN AT THE SECOND DEGREE. LOFT STORY FOR EXAMPLE IS CONSIDERED LIKE A MAKING TO SPY PEOPLE BUT OBSERVE ANYBODY LIVE TOGETHER WHERE ARRIVED STORY IS AMUSING, IT'S LIKE A MOVIE. STAR ACADEMY IT'S AS WELL A TELECAST OF REAL TV BUT IT LEAR A JOB AT YOUNGS AND IT SHOW THAT THE WORK IT'S MORE IMPORTANT FOR HAVE THAT YOU WANT. ALL THING CONSIDERED IT IS INSTRUCTIVE FOR YOUNG PEOPLE. TO SUM UP I THINK REAL TV IT'S ONLY AN ENTERTAINMENT AND PEOPLE SHOULD LEAVE OFF BLAME THIS TYPE OF ENTERTAINMENT.

ALEXANDRA, EDITOR

CINEMA

THE ORAL PIERCINGS CAUSE THE WASHING AWAY OF THE TEETH

SPORT

WITH AVERAGE TERM, THE PIERCINGS OF THE LANGUAGE, LIP OR CHEEK CAN DAMAGE GENIVES AND TO LEAD TO THE LOSS OF THE TEETH. IT IS WHAT A RECENT STUDY OF THE UNIVERSITY FROM MARYLAND REVEALS, IN BALTIMORE (UNITED STATES), PUBLISHED IN THE NEWSPAPER. ITS AUTHORS HAVE FOLLOWED AROUND FIFTY OF TEENAGERS DEPENDENT ORAL PIERCING FOR FIVE YEARS AND MORE. ON A THIRD OF THE PEOPLE, ONE HAS CONSTATED PROBLEMS OF GUMS. PANGER CHEZ FIVE OF THEM, APPEARED CAVITIES SEVERE AND GUM'S LESIONS CLOSE TO THE JEWEL AND ZONES OF FRICTIONS. THREE YOUNG EXAMINED ADULTS ARE EVEN AFFLICTED WITH CAVITIES FROM FIVE TO EIGHT MILLIMETRES AROUND THEIR TEETH! A SIGN OF PERIODITIDE, THAT IT TO SAY AN EROSION OF THE STRUCTURES OF SUPPORT OF THE TEETH, BEING ABLE TO LEAD TO THE WASHING AWAY. WHERE THE RECOMMENDATION OF THE RESEARCHERS TO THE HOLD SURGERY OF THIS TYPE OF PIERCING: TO CONSULT A DENTIST REGULARLY...

STÉPHANIE, JOURNALIST

HOROSCOPE

NEWS IN BRIEF

● ATTACK IN IRAQ. BOMB IN THE HOUSE OF THE PRESIDENT.
● MICHAEL JACKSON IS ARRESTED. HE IS SUSPECTED TO DRUG.
● STAR ACADEMY IS A FIXING. PUBLIC VOTING ARE NOT TAKE SOMETHING INTO ACCOUNT.
This week a thirteen-year-old girl was caught by an enormous shark in the Pacific ocean.