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Figure 7.27: Scatter plots of genotypic diversity versus the estimated best GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.2 Relationship between Phenotypic Diversity and Estimated Best GP 

The relationship between the phenotypic diversity and estimated best GP for the blue 

and red teams are depicted in Figure 7.28 (a) and (b) respectively. In both teams, there 

was negative relationship between these two variables in CEAN and CEAHOF whereas 

the relationship between these two variables was unclear in CEAFS and CEACFH 

which support the result obtained from the correlation analysis. 
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Figure 7.28: Scatter plots of phenotypic diversity versus the estimated best GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.3 Relationship between Genotypic Diversity and Estimated Average GP 

Similar to Figure 7.28, the relationship between the genotypic diversity and estimated 

average GP is depicted in Figure 7.29 (a) and (b) for the blue and red team respectively. 

The figures also demonstrate weak relationship between these two variables. As in the 

relationship between the estimated best GP and genotypic diversity, the CEAN and 

CEAHOF achieve higher best GP and low genotypic diversity. Contrary, the CEAFS 

and CEACFH achieve higher diversity but low estimated best GP. 
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Figure 7.29: Scatter plots of genotypic diversity versus the estimated average GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.4 Relationship between Phenotypic Diversity and Estimated Average GP 

Similar to Figure 7.28, the relationship between genotypic diversity and estimated 

average GPs for the blue and red team are depicted in Figure 7.29 (a) and (b) 

respectively. The figures also demonstrate weak relationship between these two 

variables. 
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Figure 7.30: Scatter plots of phenotypic diversity versus the estimated average GP in the 

CEAN, CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of 

the last 10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each 

plot. 

 

The above section described information about all four algorithms indicating the 

relationship between diversity and GP in this study. Scatter plots displayed that there 

were negative relationship between phenotypic diversity and GP (both the estimated 

best and estimated average). However, the relationship between genotypic diversity and 

GP (both) was not so strong.  

 

In order to visualize the outcomes as strategies obtained from the four algorithms, the 

following section provides the discussion of the evolved tactics.  

 

7.4.5 Evolved Strategies for the Coastline Protection Scenario 

Similar to the anchorage protection optimization, the coastline protection was also 

optimized using four variants of CEAs with the population size 15. Thus, there were 15 

sets of parameters in each team which evolved in each generation in each of the four 

algorithms. Each set of these parameters represents the blue or red team‟s strategy. Due 
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to the high number of strategies, it is not possible to discuss all strategies here. 

Therefore, from the last generation, a set of parameters with the highest fitness value 

from each team were put into the scenario and it was executed in the simulator to 

investigate the evolved strategy. From each of the four algorithms, the evolved set of 

parameters at a mutation rate of 40% from both teams was chosen. The evolved tactics 

for the blue and red team are presented below. 

 
 

 
Figure 7.31: The red and blue emerged tactics when the scenario was optimized using the 

CEAN at a mutation rate of 40% 

 

Figure 7.31 shows the blue and red team‟s tactics that were evolved when the scenario 

was optimizing using the CEAN. The red team uses deception tactics as one of the red 

boat sneaks through the right corner while two others grab the attention of surveillance 

patrols. This strategy may maximize their aim of reaching the coastline as one red boat 

uses a flanking strategy. In order to counteract the red team‟s strategy, the blue team 

expanded the surveillance area. This may be a wise strategy for the blue boats as they 

cannot focus on only a specific area which could increase risks of penetration. 
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Figure 7.32: The red and blue emerged tactics when the scenario was optimized using the 

CEAFS at a mutation rate of 40% 

 

Likewise, Figure 7.32 shows the evolved strategies for the blue and red teams when the 

scenario was optimized using CEAFS. The red team again followed deception tactics in 

which two boats distract the blue patrols and another red boat sneaks from the left side. 

As mentioned in the CEAN scenario analysis, flanking tactics are always a strong 

strategy for the red boats especially when they are unarmed and have to face armed 

opponents. The blue boat targeted the potential route of the red boats and did not widen 

the patrolling area. In this scenario, the blue team‟s strategy could be economic; 

however, in reality, their surveillance would not be effective to stop red boats if similar 

to the evolved route shown above were used by the red boats.  
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Figure 7.33: The red and blue emerged tactics when the scenario was optimized using the 

CEAHOF in 40% mutation rate 

 

Figure 7.33 shows the evolved tactics when the scenario was optimized using the 

CEAHOF. Similar to the previous two scenarios, the red boats follow a deception 

strategy in which two boats sneak from two opposing sides when another red boat 

distracts the patrolling blue boats. This was an effective tactics for the red boats that 

maximize their aim of reaching the coastline. The blue boats widen their surveillance 

area to stop sneaking boats. This strategy could best address the red team‟s flanking 

strategy.  
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Figure 7.34: The red and blue emerged tactics when the scenario was optimized using the 

CEACFH in 40% mutation rate 

 

Figure 7.34 shows the red boat and blue boat‟s tactics that emerged from the CEACFH. 

The red teams followed the penetration tactics by following a relatively direct route 

from different locations. This strategy may lead them to reaching the coastline if they 

could trick the patrolling boats. However, this red strategy could increase their attrition 

rate if they are caught by the blue surveillance. The blue boats extended their 

surveillance area focussing their patrol on locations from where there could be more 

attempts at penetration. This strategy could be less expensive in comparison to the 

strategy obtained from CEAHOF but if the red boats use deception tactics, this blue 

strategy may not be effective to stop their penetration attempt.  

 

The analysis of the four scenario from each of the four algorithms shows that the red 

boats use flanking strategy (avoid direct confrontation) to reach the coastline. Some red 

boats were found to be using a direct confrontation strategy which may be to distract the 

attention of the blue boats. The blue boats, except in the scenario from CEAFS, widen 

their surveillance area in order to counter the red teams‟ flanking strategy. However, the 
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blue boats in CEAFS detect the anticipated route of the red boats and patrol only in that 

area. 

 

7.5 Conclusion 

Experiments were conducted to optimise two RT scenarios, anchorage protection and 

coastline protection, using a naïve CEA and three variants in this study. The challenge 

for these algorithms was to find optimum strategies for the team that could best 

counteract the opposing strategies. Each of these four algorithms has been evaluated on 

the intransitive number problem and multimodal problem described in chapter 5 and 6 

respectively. In this chapter, the performance of the algorithms was also measured by 

their generalising ability and also their ability to locate multiple optimal solutions.  

 

When measuring the performance of the algorithms via their generalising ability, each 

of the four algorithms appeared to be similar except CEACFH in the anchorage 

protection scenario for the blue team. Additionally, the same algorithm has low 

performance in the coastline protection scenario for the red team. It was expected that 

fitness sharing would perform better than other algorithms; however, it seems that 

higher diversity is not the most important factor in evolving solution in both these RT 

problem scenarios. The reason may be that fitness sharing was based on the genomes 

and a small change in genome makes a large influence to a team‟s strategy. The 

behavioural diversity could be more supportive; however, it is not practicable as there 

are no suitable methods to distinguish strategies except manual observation via 

simulation.  

 

However, in terms of locating multiple optimal solutions, CEAFS and CEAHOF 

appeared to be the better algorithms in both scenarios studied. It was expected that 

CEAFS would locate many local optimal solution as a higher diversity encourages a 

more complete exploration of the search space. However, the good performance of 

CEAHOF was unexpected and an explanation of this result could be a possible subject 

for future research.  
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In addition, some evolved strategies were also explained in this chapter. Those 

strategies provide alternatives to analysts to address existing vulnerability in their 

security plans. 

 

In this empirical study a maximum of only 5 red boats and 3 blue boats in the coastline 

protection scenario and a maximum of only 10 green boats, 5 red boats and 3 blue boats 

in the anchorage protection scenario is considered. If ever required to optimize a 

scenario that includes large number of boats (MANA allows up to 1000 number of 

agents in each team), the developed optimization tool does not require any changes to 

optimize the scenario. Despite varying the number of boats in the scenario, the search 

space remains the same. Due to the stable search space, the optimization tool can 

optimize scenarios with a small to large number of boats. As depicted in the result in the 

pilot study in chapter 3, when the number of boats involved in the scenario varied, the 

approach produced different outcomes in terms of the strategies incorporated by the 

boats. Thus, when a large numbers of boats are involved in a scenario, the strategy for 

the invaders and defenders will be obviously different. Additionally, the number of 

boats in a scenario heavily influence the computation time for running simulations.  If 

the number of boats is symbolized by n, computational time is expected to be O(n2), 

which indicates that more boats makes the optimization process much slower. However, 

the computational time can be reduced by using one or more of the following options: 

1) Adding more workstations on the Shoal cluster 

2) Reducing the number of simulations 

3) Using a one-to-some interaction approach in the CEA rather than all-to-all 

4) Facilitating with a cloud computing. 

All the above options have some drawbacks such as, each additional computer system 

would increased computing cost. If the number of simulation is reduced, the level of 

noise increases in the fitness of individuals, that is, the same individual may receive 

high or low fitness in different runs. The one-to-some interaction approach reduces 

computational time; however, it allows individuals to compete against limited 

strategies. The performance of cloud computing is heavily dependent on the internet or 

intranet service. The cloud computing would be hard to use in the area where the 

internet speed is slow. 
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8 Conclusions and Future Directions 

This chapter summarises the key findings of this research relating to RT applications 

and other related areas. Additionally, during the course of this study, some potential 

areas for additional investigation were identified. The first section presents the 

conclusion of this thesis, followed by a discussion of limitations of the study and 

suggestions for future work. 

 

8.1 Conclusion 

The literature demonstrated that RT techniques have long been used in various 

applications including military applications. Traditional RT is expensive and time 

consuming. Computerized military RT was easy to use effectively; however, finding 

the optimal strategy that best counteracts the opponent‟s strategy was still a tough 

challenge. This thesis provides contributions to the area of optimization for RT and 

other associated CEA applications. This study aimed to: 

1. Investigate approaches incorporating EAs, specifically GAs and CEAs, for finding 

good solution sets for RT scenarios and other similar applications. 

2. Identify suitable techniques that enhance CEAs. Incorporate the identified variants 

in CEAs for investigating the issues of intransitivity and multimodality in RT 

scenarios and other similar domains. 

3. Investigate suitable measures to evaluate CEAs‟ performance in various problems, 

including RT. 

 

In order to achieve these purposes, RT applications and evolutionary algorithms were 

investigated. This thesis presented a systematic study of CEAs, with and without 

common enhancements, for finding good solution sets in the context of RT. During 

analysis, this study also evaluated the general applicability of competitive CEAs using 

two other problems, the intransitive number problem and the multimodal problem. 

Details of results for each of the aims of the thesis are now summarised. 

 

In addressing the first and second aims, this study extends knowledge of factors 

affecting the application and performance of evolutionary algorithms, in the context of 
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RT and other similar applications, by conducting a systematic study involving GA, a 

basic CEA and three variants (CEAFS, CEAHOF and CEACFH). The study involving 

GA was described in Chapter 3, showing the limitation associated with GAs supporting 

the optimization of a single population at a time. An observation from this study 

showed that by fixing the strategy of one competing team, various strategies capable of 

defeating the opposition can be evolved for the optimized team. However if in turn, the 

optimal strategy of the optimised team is then used as the fixed strategy and a GA is 

used to optimised strategies for the former team, it is possible to find some good 

strategies for the former team that is able to defeat that fixed optimal strategy. This 

indicated that even “optimal” strategies may be defeated when the opponent team is 

optimized against them. The optimization tool, described in Chapter 3, searched for a 

best strategy that could counteract one known fixed opponent‟s strategy. However, in 

combat it is never enough to consider or hypothesize just one, or even a few, 

opponents‟ strategies and practice to defeat those plans. In reality, teams in combat 

need to adjust strategies to react to different strategies that opponent may utilize at 

different points. CEAs were identified as suitable algorithms which were capable of 

optimizing two teams simultaneously for RT applications. 

 

The incorporation of CEAs for RT is still in its infancy and existing studies that used 

CEAs have yet to explore issues associated with the pathologies associated with CEAs 

and characteristics such as intransitivity and multimodality. This thesis presents a more 

complete and systematic study of these issues in the following way. This study carried 

out a systematic study of variants of CEAs (i.e. CEAN, CEAFS, CEAHOF and 

CEACFH) on four different test problems; one with intransitivity, followed by one with 

multimodality and lastly two RT scenarios. In terms of the variants of CEA, they are: 

naïve CEA (CEAN), FS integrated into the naïve CEA (CEAFS), HOF integrated with 

the naïve CEA (CEAHOF) and lastly HOF and FS were both integrated into the naïve 

CEA (CEACFH). It has been shown that individually, FS and HOF can enhance the 

performance of CEAs. However, there is an absence of literature in which these two 

well known techniques are jointly integrated in CEAs (or EAs). FS was included as an 

example of an implicit diversity maintenance technique. In addition, the performance 

of these algorithms in these test problems was investigated by increasing mutation rate, 

an explicit diversity maintenance technique. Chapter 5, 6 and 7 outlined these 



225 

 

investigations and described associated results. The general observations from the 

application of the four algorithms in these four different problems show that the 

performance of these algorithms in terms of GP and diversity measures appears to 

differ in these domains.   

 

Chapter 5 described the investigation to test whether CEA variants are capable of 

addressing intransitivity. They were evaluated on a well-known intransitive number 

problem. The performance of these algorithms was measured in terms of the GP and 

also the objective quality of the solutions was measured. The diversity of the 

populations was also evaluated on the basis of genomes and fitness of individuals. The 

experiments showed that in order to achieve higher objective quality, a naïve CEA‟s 

performance could be much improved when combined with a fitness sharing approach. 

In addition, it was found that the use of higher mutation rates in the naïve CEA could 

achieve higher GPs. The relationship between the two types of diversity indicated that 

if individuals are diverse genetically, they receive diverse fitness. Additionally, the 

relationship between quality and diversity shows that more diverse populations perform 

better in terms of achieving higher quality. 

 

In the context of RT, there may be more than one good strategy to defeat an 

opposition‟s plans. In addition, in the literature, it is stated that multimodality 

commonly appears in most domains. Therefore, a technique developed to test for 

multiple optima in an evolved population was described in Chapter 4. The result of the 

pilot study was used for this analysis. It was found that RT demonstrated more than one 

locally optimal solution. This led to the development of a scalable multimodal problem, 

n-peak, that has been described in Chapter 6. Subsequent investigation involved using 

the 5-peaks multimodal problem. The challenge for CEAs was to identify a pre-defined 

set of peaks.  Subsequently, the performance of the four CEA variants was measured 

using GP, CEMD, PR and SR. The diversity of the populations was also measured. It 

was found that, rather than using only a naïve CEA, the algorithm‟s performance could 

be improved if it was used with a combination of the HOF and the FS approaches in 

this domain. The relationship between quality and diversity shows that diverse 

populations can achieve higher quality and also find more peaks than non-diverse 

population in a multimodal domain problem. 
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The optimization tool, which was used in the intransitive number and multimodal 

problems, was subsequently used in two RT scenarios. This is described in Chapter 7. 

These two scenarios were created using the MANA simulator and have different 

environments and objectives. In the pilot study, the GA was used to optimize a RT 

scenario. However, GAs cannot evolve two teams simultaneously. CEAs, with and 

without common enhancements, were used to optimize the previously studied scenario 

as they can evolve two populations simultaneously. For the enhancement of the CEA‟s 

performance, variants such as the HOF and FS were integrated. The quality of the 

algorithms used in this study was measured using GP. This thesis has also offered an 

in-depth analysis of the strategies which emerged for the blue and red teams in the RT 

application. A multimodal test was also conducted on the evolved strategies to check 

the number of local optima that existed in the evolved populations.  

 

It was found that both teams performed better with a certain amount of diversity in both 

scenarios. The populations in the CEAFS were highly diverse as well as including high 

numbers of local optima, i.e. many good solutions rather than one the best solution 

existed. However, in terms of GP, the CEAFS‟s performance was relatively poorer than 

CEAN. The CEACFH also highly diversified the populations; however, its 

performance in achieving GP was relatively low and it failed to produce populations 

with high numbers of local optima.  

 

This empirical study demonstrated that the naïve algorithm, which suffers from various 

pathologies including cycling and forgetting, may perform well with high mutation 

rates. The results suggested that the higher mutation rate was beneficial, not only in 

diversifying the populations but also to improve the performance of the algorithms. The 

CEAN, when used with higher mutation rate, produced good quality populations that 

scored high GP. However, the multimodal test showed that the population did not 

evolve as many local optima as the other algorithms evaluated.  

 

Another finding from this thesis relates to the application of high mutation rates (a 

range of 2.5% to 100%). A higher mutation rate forces higher diversity; however, a 

higher diversity caused by extreme mutation may not give a favourable outcome in 
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terms of finding the optimal solution. Wright (1986) has stressed for the balance 

between genetic homogeneity and heterogeneity, which also support the argument that 

extreme diversity may not always be good. This study tries to examine the effect, of 

systematically increasing the mutation rate to its extreme, on the performance of CEAs. 

The results from Chapter 5 and 6 provide support that extreme mutation does not result 

in favourable outcomes as in many instances the performances of the algorithms starts 

to deteriorate when the mutation rates exceeds some specific values.  

 

In terms of addressing the third aim, this study investigated suitable measures to 

evaluate the performance of CEAs. In CEAs, the populations evolve by evaluating each 

individual against the opposing population. When a population improves its 

performance against its opposing population, this in turn forces the competing 

population to improve its performance. An „arms race‟ occurs in which the populations 

eventually get better performing individuals, which may be seen through comparison 

with an external criterion, such as a fixed test population. However, their subjective 

fitness will remain unchanged or, at least, very similar because the opposing 

populations are also evolving simultaneously. Therefore, CEAs‟ performance cannot be 

measured on the basis of their subjective fitness. In order to measure the quality of 

CEAs‟ population, a technique called „generalisation performance‟ (GP) was used. 

According to this technique, archive populations were created for each team. The 

archive population was a non-evolving fixed set of solutions which were selected on 

the basis of their performance against the randomly generated set of solutions. In every 

generation, evolving teams were evaluated against their respective archive population 

which showed the eventual progress of the evolving population. Therefore, the GP 

represents the quality of the population. 

 

The GP as a quality measurement technique was used in all domains studied in this 

thesis. Additional performance measures were also used in specific domains. In the 

intransitive number problem, the performance of the algorithms was also measured on 

the basis of their objective fitness. This thesis also introduced a probability distribution 

method, circular earth movers‟ distance (CEMD), to measure the performance of CEAs 

in their ability to detect multiple peaks. CEMD has been widely used in image 

processing applications. In addition, peak ratio (PR) and success ratio (SR) were 
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utilized to rate algorithms on the basis of the proportion of the total number of peaks 

detected.  

 

The diversity of the population was also measured in two ways: genotypic and 

phenotypic. Genotypic diversity was measured by calculating distance between the 

individuals‟ genes within a population. Likewise, phenotypic diversity was measured 

on the basis of fitness of individuals within a population. After measuring the quality 

and diversity of populations, a relationship between diversity and quality was also 

analysed in each of domain problem studied in this thesis. 

 

8.2 Limitations and Future Research 

The previous section has described the conclusions associated with this research. This 

section details the limitations of this study and suggests possible options for ongoing 

research into automated red teaming. Intuitively, coevolution involves a number of 

individuals‟ interactions to calculate their fitness done by simulating an interaction 

scenario. Additional scenario simulations are required when performance needs to be 

measured with a fixed test set. This characteristic of CEAs enormously increases the 

computational time to conduct RT optimization. Therefore, to economize the 

computational time, certain parameters in the study associated with the RT scenarios 

have been constrained as follows: 

 Population size of 15 was chosen for each team in both RT scenarios evaluated 

 Only 10 simulation runs were performed for evaluating each pair of strategies 

 Each run of each algorithm used only 50 generations 

 For statistical variation, only 15 runs of each algorithm were executed at each 

mutation rate 

 RT optimization was tested only at 4 levels of mutation rate. 

 

An increase in population size might suggest more realistic strategies. An increase of 

simulation runs would reduce the noise and an increase in the number of generations 

could provide more optimum results. Since the RT outcomes were highly fluctuating, if 

mutation rates can be varied in stepwise increments of 2.5%, a clearer picture of the 

algorithms‟ performances could be obtained. 
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Due to time constraints, this research was limited to investigations involving the 

integration of HOF and FS in CEAs. Other techniques addressing the pathologies of 

CEA can be investigated for RT applications.  

 

An additional limitation of this study would be the issue of scalability in RT scenario. 

This thesis considered only a small number of boats in both scenarios studied. If the 

number of boats is increased, it will increase the computational time. 
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