2014

A Genetic Algorithm-Based Feature Selection

Oluleye H. Babatunde
Edith Cowan University, obabtund@ecu.edu.au

Leisa Armstrong
Edith Cowan University, l.armstrong@ecu.edu.au

Jinsong Leng
Edith Cowan University, j.leng@ecu.edu.au

Dean Diepeveen

A Genetic Algorithm-Based Feature Selection

Babatunde Oluleye
eAgriculture Research Group, School of Computer and Security Science, Edith Cowan University, Mt Lawley, Perth, WA, 6050, Western Australia, Australia
Email: hezecomp@yahoo.com

Jinsong Leng
eAgriculture Research Group, School of Computer and Security Science, Edith Cowan University, Mt Lawley, Perth, WA, 6050, Western Australia, Australia

Armstrong Leisa
eAgriculture Research Group, School of Computer and Security Science, Edith Cowan University, Mt Lawley, Perth, WA, 6050, Western Australia, Australia

Diepeveen Dean
Department of Agriculture and Food, South Perth, 6067, WA, Australia

Abstract – This article details the exploration and application of Genetic Algorithm (GA) for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100) features were extracted from set of images found in the Flavia dataset (a publicly available dataset). The extracted features are Zernike Moments (ZM), Fourier Descriptors (FD), Lengendre Moments (LM), Hu 7 Moments (Hu7M), Texture Properties (TP) and Geometrical Properties (GP). The main contributions of this article are (1) detailed documentation of the GA Toolbox in MATLAB and (2) the development of a GA-based feature selector using a novel fitness function (kNN-based classification error) which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy.

Keywords – Feature Extraction, Binary Genetic Algorithm, Feature Selection, Pattern Classification.

I. INTRODUCTION

High dimensional feature set can negatively affect the performance of pattern or image recognition systems. In other words, too many features sometimes reduce the classification accuracy of the recognition system since some of the features may be redundant and non-informative [1]. Different combinatorial set of features should be obtained in order to keep the best combination to achieve optimal accuracy. In machine learning and statistics, feature selection, which is also called variable selection, attribute selection or variable subset selection, is the process of obtaining a subset of relevant features (probably optimal) for use in machine model construction. There are lots of techniques available for obtaining such subsets. Some of these techniques include Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) ([9], [10], [11]). More often, lots of researchers in recent times have employed WEKA (Weka (Waikato Environment for Knowledge Analysis) software for dimensionality reduction. However, WEKA software is static in its feature selection approach as the users cannot change the configuration of the concerned feature selectors [25]. GA has been known to be a very adaptive and efficient method of feature selection as reported by ([18],[19],[20]) since the users or writers can change the functional configuration of GA to further improve their results. As such, a GA-based feature selection (a subspace or manifold projection technique) will be used to reduce the number of features needed by the WEKA Classifiers used in this work. We employed MATLAB GA Toolbox and provided detailed walk-through of its operation. A Feature Subset Selection (FSS) is an operator Fs or a map from an m-dimensional feature space (input space) to n-dimensional feature space (output space) given in mapping

$$F_S : R^m \rightarrow R^n$$

where \(m \geq n \) and \(m, n \in Z^+ \). \(R^m \) is any database or matrix containing the original feature set having \(r \) instances or observation, \(R^m \) is the reduced feature set containing \(r \) observations in the subset selection. This is further illustrated in Figure 1. It is to be noted that Feature selection is inherently a multi-objective problem with two main objectives of minimizing both the number of features and classification error.

![Illustrative diagram on feature selection](Image)

Fig.1. Illustrative diagram on feature selection

II. COMPLETE DATASET

A. Features Generated from the Flavia Dataset (Dataset1)

The complete dataset for this work comprises of Zernike Moment (ZM), FDs, Lengendre Moments (LM), Hu 7 Moments (Hu7M), Texture Properties (TP) and Geometrical properties (GP) ([22], [23], [24]).The variables \(F_i \), \(i = 1(1)100 \), in Table 1 and Table 2 represent the features needed for this work. Thus the feature space of this work is a \(R^m \) matrix, where \(r \), (number of observations) = 1907 and \(m \), (number of attributes or futures required)= 100.

B. Ionosphere dataset (Dataset2)

The alternative dataset used for testing this work was the Ionosphere dataset from the University College London machine learning repository available at http://archive.ics.uci.edu/ml/datasets/Ionosphere. This dataset comprises of 351 observations and 34 attributes with binary class information (bad radar and good radar returns).
Table 1: 100 Features in the Dataset

<table>
<thead>
<tr>
<th>SN</th>
<th>Descriptor</th>
<th>Features</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZM</td>
<td>F₁, F₂, F₃ ……F₂₀</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>LM</td>
<td>F₂₁, F₂₂, F₂₃ ……F₄₀</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Hu7M</td>
<td>F₄₁, F₄₂, F₄₃ ……F₄₇</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>TP</td>
<td>F₄₈, F₄₉, F₅₀ ……F₉₉</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>GP</td>
<td>F₁₀₀, F₁₀₁, F₁₀₂ ……F₁₀₀</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>FĐs</td>
<td>F₁₀₀, F₁₀₁, F₁₀₂ ……F₁₀₀</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 2: Hundred (100) features derived from the Flavia Dataset ([27])

<table>
<thead>
<tr>
<th>Observation</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>……</th>
<th>F₁₀₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>X₁₁</td>
<td>X₁₂</td>
<td>X₁₃</td>
<td>X₁₄</td>
<td>……</td>
<td>X₁₁₀₀</td>
</tr>
<tr>
<td>Image 2</td>
<td>X₂₁</td>
<td>X₂₂</td>
<td>X₂₃</td>
<td>X₂₄</td>
<td>……</td>
<td>X₁₁₀₀</td>
</tr>
<tr>
<td>Image 3</td>
<td>X₃₁</td>
<td>X₃₂</td>
<td>X₃₃</td>
<td>X₃₄</td>
<td>……</td>
<td>X₁₁₀₀</td>
</tr>
<tr>
<td>Image 4</td>
<td>X₄₁</td>
<td>X₄₂</td>
<td>X₄₃</td>
<td>X₄₄</td>
<td>……</td>
<td>X₁₁₀₀</td>
</tr>
<tr>
<td>Image 1907</td>
<td>X₁₉₀₇₁</td>
<td>X₁₉₀₇₂</td>
<td>X₁₉₀₇₃</td>
<td>X₁₉₀₇₄</td>
<td>……</td>
<td>X₁₉₀₇₁₀₀</td>
</tr>
</tbody>
</table>

C. Problem Statement

Based on the dataset described in Table 2 the following optimization problem was solved.

Problem:

Given that \(n \in \mathbb{Z}^+ \), \(1 \leq n \leq 100 \) and \(\alpha \in \mathbb{R}^+ \) \(0 \leq \alpha \leq 100 \) where:

(i) \(n \) = number of features in the reduced feature set.

(ii) \(\alpha \) = Classification error.

Find a subset of features \(F \), in Table 2 such that the objective \(\alpha \) and \(n \) are minimized.

III. GENETIC ALGORITHM (GA)

Genetic Algorithms (GA) is an optimization technique, a population-based and algorithmic search heuristic methods that mimic natural evolution process of man ([2], [3],[19], [20], [21], [26]). The operations in a GA are iterative procedures manipulating one population of chromosomes (solution candidates) to produce a new population through genetic functionals such as crossover and mutation (in a similar way to Charles Darwin evolution principle of reproduction, genetic recombination, and the survival of the fittest). As documented in [4], the terminology between human genetic and GA can be summarised as shown in Table 3.

Table 3: Comparative Terminology between human genetic and GA

<table>
<thead>
<tr>
<th>SN</th>
<th>Human Genetic</th>
<th>GA Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chromosomes</td>
<td>bit strings</td>
</tr>
<tr>
<td>2</td>
<td>genes</td>
<td>Features</td>
</tr>
<tr>
<td>3</td>
<td>allele</td>
<td>feature value</td>
</tr>
<tr>
<td>4</td>
<td>locus</td>
<td>bit position</td>
</tr>
<tr>
<td>5</td>
<td>genotype</td>
<td>encoded string</td>
</tr>
<tr>
<td>6</td>
<td>phenotype</td>
<td>decoded genotype</td>
</tr>
</tbody>
</table>

The fitnesses of the solution candidates (chromosomes) are evaluated using a function commonly referred to as objective or fitness function. In other words, the fitness function (objective function) gives numerical values which are used in ranking the given chromosomes in the population. The formulation of the fitness function depends on the problem being solved. A good example to illustrate a fitness function is the parabola \(h(x) = x^2 \) to be minimized viz \(\min [h(x)] \), then the dual formulation of this problem is to maximize the negative of \(h(x) \), written as \(\max [-h(x)] \). Thus maximizing the negative of a function is equivalent to minimizing its positive. In relation to this article, maximizing classification accuracy is equivalent to minimizing the classification error rate.

IV. GA-BASED FEATURE SELECTION

As documented in [26], the five important issues in the GA are chromosome encoding, fitness evaluation, selection mechanisms, genetic operators and criteria to stop the GA (see Figure 2). The GA operates on binary search space as the chromosomes are bit strings. The GA manipulates the finite binary population in similitude of human natural evolution. To begin with, an initial population is created (mostly randomly) and evaluated using a fitness function. For binary chromosome employed in this work, a gene value ‘1’ depicts that the particular feature indexed by the position of the ‘1’is selected. Otherwise, (i.e. if it is ‘0’), the feature is not selected for recomosomal evaluation. Using the positional index of features indexed by the ‘1’s’, the chromosomes are then ranked and based on the rankings, the top \(n \) fittest kids (Elitism of size \(n \)) are selected to survive to the next generation. The fitness evaluation is done through Algorithm 2. After the elite kids are pushed automatically to the next generation, the remaining kids (individuals) in the current population are allowed to genetically pass through the functionals crossover and mutation to form crossover and mutation kids respectively. The three (3) kids viz elite, crossover and mutation then form the new population (new generation). Crossover (a genetic functional) is a combination of two individuals (chromosomes) to form a crossover kids. Mutation operator on the other hand, is used for genetic perturbation of the genes in each chromosomes through bits flipping depending on the mutation probability. Using the steps in Figure 2, the modus operandi of the GA-based feature selection are explained in this section. It’s to be noted that this same figure (although with slight modification) is employed in our previous paper [26].
A. Generation of Initial Population

The initial population for this work is a matrix of dimension Population Size x Chromosome Length containing only random binary digits. The Population Size is the number of chromosomes (individuals) in the population, while Chromosome Length (Genome Length) is the number of bits (genes) in each chromosome. It is a good idea to make the population size to be at least the value of the chromosome length so that the chromosomes in each population span the search space [5]. The pseudocode (same as [26]) for initial population is given in Algorithm 1.

Algorithm 1. Creation of Initial Population (see [26])

1: procedure POPFUNCTION
2: pop  Binary Matrix of size PopulationSize * GenomeLength
3: Return pop
4: end procedure

B. Fitness Evaluation

For GA to select a subset of features, a fitness function (a driver for the GA) must be defined to evaluate the discriminative capability of each subset of features. The fitness of each chromosome in the population are evaluated using kNN-based fitness function (see Algorithm 1). The Dataset1 is shown in Table 2 comprising of 100 features. The second dataset (Dataset2) contains 34 features. The kNN algorithm solves classification problem by looking for the shortest distance between the test data and training sets in the feature space.

Suppose the training set, using Dataset1 and Dataset2, is defined as

\[\{ x_1, x_2, x_3, ..., x_M \} \]

where \(M = \{1907, 34\} \) for the Dataset1 and Ionosphere Dataset (Dataset2) respectively. The M is the number of observations in these dataset. Each \(x_i, i = 1(1)100 \) is a vector containing 100 features as shown in Table 2. The kNN algorithm computes Euclidean distance between test data \(x_{test} \) and the training sets and then find the nearest point (shortest distance) from the training set to the test set. This distance is expressed in Equation 3.

\[D(x_{test}, x_i) = \left(\sum_{n=1}^{M} (x_{test} - x_i)^2 \right) \]

The kNN count each categorymin the class information (accumulated as \(count(x_{i}) \) using 3 Nearest Neighbors and then report classification results and errors based on the expression:

\[\text{arg max}(count(x_{i})) \]

subject to:

\[\sum_{i=1}^{M} count(x_{i}) = \text{class} \]

where \(\text{class} = \{1, 2, 3, ..., 32\} \) and \(\{1, 2\} \) for the experimental Dataset1 and Dataset2 respectively. In each chromosome a gene value ‘1’ indicates the particular feature indexed by the position of the ‘1’ is selected. If it is ‘0’, the feature is not selected for evaluation of the chromosome concerned. The Genome (Chromosome) are the encoded bit strings representing the features. As the GA iterates, the individuals (combinatorial set of features) in the current population are evaluated, and their fitness are ranked based on the kNN-based classification error. Individuals with lower fitness have better chance of surviving into the
next generation or mating pool. The iterations involved in running the GA ensures that the GA reduce the error rate and picks the individual with the least (best) fitness value since error rate is reported for each chromosomes involved and the smallest of error rate is finally picked up by the GA.

$$\text{fit} = \frac{\alpha}{N_f} + \exp\left(\frac{1}{N_f}\right)$$ \hspace{1cm} (6)

$$\alpha = \text{kNN-Based classification error.}$$

$$N_f = \text{Cardinality of the selected features.}$$

The algebraic structure of this equation ensures the learning of the GA, error minimization and reduced number of features selected.

Algorithm 2. Fitness Function Evaluation (see [26])

1: procedure fit()
2: FeatIndex Indices of ones from BinaryChromosome
3: NewDataSet DataSet indexed by FeatIndex
4: NumFeat Number of elements in FeatIndex
5: 3 \text{ \small{\leftarrow \small{NumNeighborskNN}}}
6: kNNError \text{ \small{\leftarrow \small{ClassifierKNN(DataSet,ClassInformation ,NumNeighborskNN)}}}
7: Return kNNError
8: end procedure

C. Generation of children for new population

After fitness evaluation, new population is created using Elitism and Genetic Operators (Crossover and Mutation). In this GA (MATLAB GA Toolbox), three types of children are created to form the new population [5]. They are:

- **(a) Elite children:** These children are given pushed automatically into the next generation (being those with the best fitness values). Elitism in the GA Toolbox is specified by the identifier “EliteCount” with default value of 2. It is obviously bounded by the population size. This implies “EliteCount” \(\leq\) PopulationSize. With size 2, GA picks the top two best chromosomes and push them automatically to the next generation.

- **(b) Crossover Children:** This is explained in section D below.

- **(c) Mutation Children:** This is explained in section D below.

D. Proportion of Elite, Crossover, and Mutation Children in the New Population

Table 4 shows the configuration of the GA in this work. From Table 4, the length of each chromosome for experimental Dataset2 is 100 since we have a total number of 100 features extracted from the Flavia dataset. The maximum number of generation was set to 300 to avoid the GA been trapped in local optimal. To create new population, the GA performs Elitism, Crossover and Mutation in sequential order.

- **(1) Elite Children:** The number of elitism as shown in Table 4 is 2. Therefore, the top two kids with the lowest fitness values are automatically pushed in the next generation. Thus, Number (Elite kids) = C1 = 2. This means there are 98 (i.e.100-C1) individuals in the population apart from elite kids. From the remaining 98 chromosomes, crossover and mutation kids are then produced.

- **(2) Crossover Children:** The proportion/fraction of the next generation, apart from the left over kids, that are produced by crossover is called Crossover fraction. Crossover fraction used in this work is 0.8. If this fraction is set to one, then there is no mutation kids in the GA, otherwise, there will be mutation kids. With the fraction taken as 0.8, then the number of crossover children will be C2 = round (98 * 0.8) = 78

- **(3) Mutation Children:** Finally, number of mutation children is: C3 = 100- C1 - C2 = 100-78-2 = 20.

This implies C1 + C2 + C3 = 100

E. Selection Mechanism Used: Tournament

The aim of selection mechanism in GA is to make sure the population (solution candidates) is being constantly improved over all fitness values. The selection mechanism helps the GA in discarding bad designs and keeping only the best individuals. There are many selection mechanism in the GA Toolbox, the default of this being stochastic uniform (with default size 4) but Tournament Selection of size 2 was used in this work due to its simplicity, speed and efficiency ([6], [17], [18]). Also, tournament selection enforces higher selection pressures on the GA (resulting in higher rate of convergence) and makes sure the worst individual does not get into the next generation ([4], [9], [10], [11], [12], [13], [14]). In the GA, two functions are needed to perform tournament selection. The first function generates the players (parents) needed in the actual tournament function, while the second function which outputs the winner of the tournament. The fitnesses of the selected chromosomes are ranked and the best of this becomes the winner. In tournament selection of size 2, two chromosomes are selected from the population after the Elite kids are taken out and the best of the two chromosomes,(using fitness ranking), is selected. Tournament selection is performed iteratively until the new population is filled up.

F. Crossover function

The crossover operator in the GA genetically combines two individuals (parents) to form children for the next generation. Two parents chromosomes are needed to carry out crossover operation. The two chromosomes are taken from tournament selection. The GA uses crossover fraction, say, XoverFrac to specify the number of kids produced by the crossover functional after Elite kids are removed from the current population being evaluated. The variable XoverFrac, as discussed in the preceding section, is bounded by the inequality 0 \(\leq\) XoverFrac \(\leq\) 1. The value used for XoverFrac in this work is 0.8 and the crossover function chosen is arithmetic type. In this case, XOR operation is performed on the two parent chromosomes since they are binary ([5], [7], [8], [15], [16]). This is illustrated in Equation 7.

$$\text{CrossOverkids (ii) } = p_i \oplus p_2$$ \hspace{1cm} (7)

where

- ii is an index that runs from 1 to the number of kids needed for crossover;
- \(\oplus\) is an XOR operator for binary operands;
- p1 = first parent needed by the crossover function;
- p2 = second parent needed by the crossover function;
The XOR operator \oplus works as follows:
1 \oplus 1 = 0
1 \oplus 0 = 1
0 \oplus 1 = 1
0 \oplus 0 = 0
So for two binary operands (parent chromosomes) viz;
p1 = 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
p2 = 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0
CrossOverKid = p1 \oplus p2
CrossOverKid = 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0

G. Mutation function

Mutation is a genetic perturbation of individuals in the population. Mutation ensures genetic diversity and searching of broader solution space. We used uniform mutation as our choice. For uniform mutation, the GA generates GenomeLength set of random numbers (RDs) from uniform distribution. The value of each random number is associated with the position of each gene (bit) in the chromosome. The chromosome is scanned from left to right and for each associated bit, the value of each RD is compared with the mutation probability (denoted as p_m) and if the RD at position i is less than p_m, then gene (bit) at position i is flipped. Otherwise, the gene is left unflipped. This is repeated from the Least Significant Bit (LSB) to the Most Significant Bit (MSB) of each chromosome in the mutation children. As an example, given a parent chromosome

\[p = 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 \]

The number of bits in this p is 20. Therefore, a set of 20 uniform random numbers are generated, say, RD20 = [0.5159 0.4161 0.5830 0.5138 0.2839 0.3934 0.2659 0.3776 0.9710 0.2595 0.1807 0.2244 0.5224 0.3166 0.4452 0.3362 0.4145 0.5863 0.6220]

If the mutation probability is $p_m = 0.3$, then p_m is compared with each vector entry in RD20 and the following binary vector $p_{m_{pos}}$ is obtained.

\[p_{m_{pos}} = 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 \]

The positional index of 1s in $p_{m_{pos}}$ are 5, 7, 10, 11, 12.

Finally, all the genes in p at locus 5, 7, 10, 11, 12 are flipped, which will then produce a mutation kid as:

MutKid = 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0

H. New Population (Member of next generation)

The GA keeps evolving until the new population is filled up. The new population is filled by adding individuals from Elite kids, crossover kids, and mutation kids. This is illustrated by Equation 8

\[\text{NewGeneration} = \text{Number(Elitkids)} + \text{Number(Crossover kids)} + \text{Number(Mutation kids)} \] (8)

This is then evaluated again and the selection-reproduction steps are repeated until the stopping condition is met.

\[\text{NewGenerationScore} = \text{Fitness(\text{NewGeneration})} \] (9)

I. Repeat Until GA termination conditions occur

Once the GA reaches optimum solution, it stops. The code condition at which the GA stops is called stopping conditions. The two stopping conditions applicable to this work are:
(a) Maximum Number of Generations (Generations $\in Z^+$).
(b) Stall Generation Limit (StallGenLimit $\in Z^+$).

The GA can terminate prematurely if the 'Generations' is not properly set. The value of 'Generations' for this work was set to be 300 while the value 100 was used for StallGenLimit. The GA terminates if the average change in the fitness values among the chromosomes over StallGenLimit generations is less than or equal to Tolfun which is valued as 0.000001. Specifically, the GA examines the difference in values of fitnesses of all generations and if the average of these differences for 100 generations is less than or equal to 0.000001, the GA terminates. This implies genetic homogeneity (similarity in fitness values) among the chromosomes of the generation containing the best chromosome and consequently, the convergence of the GA.

V. SIMULATION AND EXPERIMENTAL RESULTS

Based on the GA configuration in Table 4, the following results were obtained. The carefully chosen fitness function enabled the GA to minimize classification error from kNN. As a proof (from MATLAB documentation [5]), the best fitness and mean fitness should be close in value as the GA reaches the termination condition. The stall generation is number of generations produced by the GA since the last upgrade of the fitness value. The GA terminates at generation 101. This is also evidenced by the GA simulation diagrams in Figures (4 and 5) where the value of the fitness function remains constant from generation 58 to 101 and generation 38 to 101 for the Dataset1 and Dataset2 respectively. The features selected by the GA from both datasets are:
(a) Selected Feature 1 (Dataset1) = 1, 6, 12, 15, 18, 56, 64, 71, 72, 75, 78 i.e (11% of the original dataset).
(b) Selected Feature 2 (Dataset2) = 2, 3, 5, 7, 8, 34 i.e (17.65% of the original dataset).

The best and mean fitness value, using the kNN classification error for Dataset1 were 0.1746 and 0.181 while that of Dataset2 were 0.06268 and 0.07151. These results are validated in section below.
VI. VALIDATION OF EXPERIMENTAL RESULTS

To validate the GA-FS in this work, the results of the GA-based features were compared with a number of WEKA-Based features and test were also made using the selected features on a number of WEKA classifiers such as Multi-Layer Perceptron (MLP), Random Forest (RF), J48, Naive Bayes (NB), and classification using regression (RC). The two WEKA feature evaluators used are WEKA Correlation Feature Selection Subset Evaluator (WEKA CFS-SE) and WEKA ranker (Information Gain). The GA was evaluated using fitness function as shown in Equations (4.5). The simulation diagram (Figures 4 and 5) based on the chosen fitness function shows convergence of the GA. The feature indexed by 6 in the Dataset1 cuts across all the selectors. This proves a point that this feature will be useful for building image-based classification systems. This feature is Zernike Moment of order 6 and iteration 0 (i.e ZMI(6,0)). When the Dataset1 was fed into WEKA CFS which is a wrapper-based feature selector, 20 features were reported and this includes the feature indexed by 6 also. Interestingly, the GA selected 11 features (1, 6, 12, 15, 18, 56, 71, 72, 75, 78) that were also selected by the WEKA ranker and CFS. The features common to both methods are Zernike moments, Hu moments, Texture properties, and Geometric properties. The GA approach has high level of controllability as the parameters in the GA configuration table can still be fine-tuned to obtain better results. Geometric properties of the Flavia dataset index by the vectors [70, 71, 72, 73, 74, 75, 76, 77, 78, 79] were also selected at rate more than any other features. The third features prefentially selected by all the selectors is Hu 7 moments (indexed by vectors [41, 42, 43, 44, 45, 46, 47]).

Table 7: Classification accuracy using GA and WEKA-Based features on first dataset (Dataset1).

<table>
<thead>
<tr>
<th>SN</th>
<th>Selector+WEKA Classifier</th>
<th>Accuracy (%)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GA+MLP</td>
<td>72.89</td>
<td>0.1105</td>
</tr>
<tr>
<td>2</td>
<td>GA+RF</td>
<td>72.37</td>
<td>0.1037</td>
</tr>
<tr>
<td>3</td>
<td>GA+J48</td>
<td>67.97</td>
<td>0.1300</td>
</tr>
<tr>
<td>4</td>
<td>GA+NB</td>
<td>56.72</td>
<td>0.1222</td>
</tr>
<tr>
<td>5</td>
<td>GA+RC</td>
<td>69.70</td>
<td>0.1012</td>
</tr>
<tr>
<td>6</td>
<td>WEKA(IG)+MLP</td>
<td>73.52</td>
<td>0.1135</td>
</tr>
<tr>
<td>7</td>
<td>WEKA(IG)+RF</td>
<td>74.00</td>
<td>0.1065</td>
</tr>
<tr>
<td>8</td>
<td>WEKA(IG)+J48</td>
<td>70.84</td>
<td>0.1267</td>
</tr>
<tr>
<td>9</td>
<td>WEKA(IG)+NB</td>
<td>61.25</td>
<td>0.1483</td>
</tr>
</tbody>
</table>

Table 8: Comparison GA-FS with WEKA feature selectors using Dataset1

<table>
<thead>
<tr>
<th>SN</th>
<th>Feature Selector</th>
<th>Selected Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GA</td>
<td>1, 6, 12, 15, 18, 56, 71, 72, 75, 78</td>
</tr>
<tr>
<td>2</td>
<td>WEKA (Information Gain Ranking Filter)</td>
<td>70, 77, 74, 73, 8, 50, 51, 66, 2, 9, 71, 48, 21, 61, 60, 62, 31, 79, 72, 6</td>
</tr>
<tr>
<td>3</td>
<td>WEKA (CFS Subset Evaluator)</td>
<td>1, 2, 6, 7, 12, 15, 16, 41, 43, 45, 51, 65, 66, 70, 71, 73, 74, 75, 76, 77</td>
</tr>
</tbody>
</table>

Table 9: Comparison GA-FS with WEKA feature selectors using Dataset2

<table>
<thead>
<tr>
<th>SN</th>
<th>Feature Selector</th>
<th>Selected Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GA</td>
<td>2, 3, 5, 7, 8, 34</td>
</tr>
<tr>
<td>2</td>
<td>WEKA (Information Gain Ranking Filter)</td>
<td>5, 6, 33, 29, 3, 21, 34, 8, 13, 7, 31, 22</td>
</tr>
<tr>
<td>3</td>
<td>WEKA (CFS Subset Evaluator)</td>
<td>1, 3, 4, 5, 6, 7, 8, 14, 18, 21, 27, 28, 29, 34</td>
</tr>
</tbody>
</table>

Table 10: Classification accuracy using GA and WEKA-Based features on second dataset (Dataset2).

<table>
<thead>
<tr>
<th>SN</th>
<th>Selector+WEKA Classifier</th>
<th>Accuracy (%)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GA+MLP</td>
<td>93.02</td>
<td>0.2339</td>
</tr>
<tr>
<td>2</td>
<td>GA+RF</td>
<td>94.35</td>
<td>0.1045</td>
</tr>
<tr>
<td>3</td>
<td>GA+J48</td>
<td>91.70</td>
<td>0.2462</td>
</tr>
<tr>
<td>4</td>
<td>GA+NB</td>
<td>90.55</td>
<td>0.2989</td>
</tr>
<tr>
<td>5</td>
<td>GA+RC</td>
<td>91.89</td>
<td>0.1988</td>
</tr>
<tr>
<td>6</td>
<td>WEKA(IG)+MLP</td>
<td>93.73</td>
<td>0.2388</td>
</tr>
<tr>
<td>7</td>
<td>WEKA(IG)+RF</td>
<td>92.59</td>
<td>0.2414</td>
</tr>
<tr>
<td>8</td>
<td>WEKA(IG)+J48</td>
<td>91.74</td>
<td>0.2780</td>
</tr>
<tr>
<td>9</td>
<td>WEKA(IG)+NB</td>
<td>86.32</td>
<td>0.3387</td>
</tr>
<tr>
<td>10</td>
<td>WEKA(IG)+RC</td>
<td>89.74</td>
<td>0.2801</td>
</tr>
<tr>
<td>11</td>
<td>WEKA(CFS SE)+MLP</td>
<td>92.31</td>
<td>0.2499</td>
</tr>
<tr>
<td>12</td>
<td>WEKA(CFS SE)+RF</td>
<td>92.88</td>
<td>0.2427</td>
</tr>
<tr>
<td>13</td>
<td>WEKA(CFS SE)+J48</td>
<td>90.60</td>
<td>0.2982</td>
</tr>
<tr>
<td>14</td>
<td>WEKA(CFS SE)+NB</td>
<td>92.02</td>
<td>0.2682</td>
</tr>
<tr>
<td>15</td>
<td>WEKA(CFS SE)+RC</td>
<td>90.88</td>
<td>0.2666</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

In this paper, a GA-based feature selection technique was described. The technique developed herein involved the use of a novel fitness function to select combinatorial set of features from original feature set. For benchmarking, features selected by both WEKA Feature Selectors and the GA were fed into a number of WEKA classifiers. The GA-based features outperformed WEKA-based features in more instances. In most cases, the difference in the classification accuracy reported by the
two approaches are very small. The features selected by both method on the first and second dataset respectively, are shown in Table 5 & 6. In overall, both the GA method and WEKA-CFS which are wrapper-based feature selectors produced better classification accuracy than WEKA ranker (IG) which is filter-based. The main advantange of the method herein lies in the area of controllability as the GA can be fine-tuned to produce better results all the time by changing the fitness functions. Of all the features selected, ZM had the highest frequency followed by geometric features. The approaches in this work is much more promising than those from previous works such as [27] & [28] as more features are extracted from the images used. With the application of GA for dimensionality reduction, more discriminating features were obtained.

ACKNOWLEDGMENT

This work was supported by Edith Cowan University, Western Australia under the scholarship scheme ECUIPRS (Edith Cowan University International Postgraduate Research Scholarship.

REFERENCES

