2012

Patience Is Not The Only Virtue: The Relationship Between Time Preferences, Class Attendance And Final Marks

Margaret Giles

Y H. Cheung
Edith Cowan University

Jacqui Whale
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2012

Part of the Educational Psychology Commons, and the Education Economics Commons

Powerpoint presented at the 2012 Higher Education Research and the Student Learning Experience in Business Conference, the University of Melbourne, 10-11 December.

This Presentation is posted at Research Online.
Patience is \textbf{not} the only virtue: The relationship between time preference, class attendance and final marks

Margaret Giles
YH Cheung
Jacqui Whale
Edith Cowan University

Paper presented to HERSLEB, University of Melbourne, December 2012

Earlier study

- “Patience is a virtue” but not for first year economics students
 - Final marks increased with discount rate (impatience)
 - Paper presented at Australasian Teaching Economics Conference in July 2012
 - Delegates querying generalisability of results for this and other papers that evaluated T&L interventions

- So what about selectivity bias?
 - Can we identify it?
 - Can we correct for it?

Yes 😊

- We had population data
 - We had survey respondent data
 - We also had non-respondent data

Data collection

Population
- Semester one and two 2011
- Economics 1 students
- Two metropolitan campuses
- \(N = 420\)
- Revised \(N = 412\) (8 students enrolled in both semesters – only first semester enrolment included)

Sample (n = 163)
- In class surveys
 - 191 completed surveys (46.4%)
 - 163 surveys with discount rates (39.6%)
Characteristics from student admin data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1 = Male</td>
</tr>
<tr>
<td>Outer metropolitan campus</td>
<td>1 = Joondalup</td>
</tr>
<tr>
<td>Degree</td>
<td>1 = Bachelor of Business</td>
</tr>
<tr>
<td>Type of enrolment</td>
<td>1 = Full-time</td>
</tr>
<tr>
<td>Type of student</td>
<td>1 = International</td>
</tr>
<tr>
<td>Finance</td>
<td>1 = Enrolled in or already completed first year Finance unit</td>
</tr>
<tr>
<td>Parents’ education level</td>
<td>1 = University</td>
</tr>
</tbody>
</table>

Characteristics from survey

<table>
<thead>
<tr>
<th>Characteristics from survey</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Rate</td>
<td>The annual discount rate implied by the decision to switch (upper bound)</td>
</tr>
<tr>
<td>Parents’ education level</td>
<td>1 = University</td>
</tr>
</tbody>
</table>

Characteristics from tutor records

<table>
<thead>
<tr>
<th>Characteristics from tutor records</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Attendance</td>
<td>Number of Economics tutorials attended (out of 13) during the semester</td>
</tr>
</tbody>
</table>

Survey

The survey included twenty choice statements:

1. Paid one month from now: $54 □ Paid 7 months from now: $54.36 □
2. Paid one month from now: $54 □ Paid 7 months from now: $56.04 □
3. Paid one month from now: $54 □ Paid 7 months from now: $58.20 □
4. Paid one month from now: $54 □ Paid 7 months from now: $60.24 □
5. Paid one month from now: $54 □ Paid 7 months from now: $62.50 □
6. Paid one month from now: $54 □ Paid 7 months from now: $64.80 □
7. Paid one month from now: $54 □ Paid 7 months from now: $67.08 □
8. Paid one month from now: $54 □ Paid 7 months from now: $69.48 □
9. Paid one month from now: $54 □ Paid 7 months from now: $71.96 □
10. Paid one month from now: $54 □ Paid 7 months from now: $74.44 □
11. Paid one month from now: $54 □ Paid 7 months from now: $76.92 □
12. Paid one month from now: $54 □ Paid 7 months from now: $79.40 □
13. Paid one month from now: $54 □ Paid 7 months from now: $81.88 □
14. Paid one month from now: $54 □ Paid 7 months from now: $84.36 □
15. Paid one month from now: $54 □ Paid 7 months from now: $86.84 □
16. Paid one month from now: $54 □ Paid 7 months from now: $89.32 □
17. Paid one month from now: $54 □ Paid 7 months from now: $91.80 □
18. Paid one month from now: $54 □ Paid 7 months from now: $94.28 □
19. Paid one month from now: $54 □ Paid 7 months from now: $96.76 □
20. Paid one month from now: $54 □ Paid 7 months from now: $99.24 □

Comparison of students who completed the survey (n = 191) with those who didn’t (n = 221)

Students who completed the survey:
- Were slightly older
 - (F = 8.85; p = 0.0031)
- Had higher final mark (55% cf 37%)
 - (F = 60.40; p = 0.000),
- Had higher course average (60% cf 48%)
 - (F = 42.39; p = 0.000),
- Attended more tutorials (on average 10 cf 6)
 - (F = 140.75; p = 0.000)
- Had parents with less education (43% cf 59%)
 - (chi sq = 8.3518; p = 0.004).
Comparison of consistent surveys (n = 163) with inconsistent surveys (n = 28)

Students who completed consistent surveys:
- Had higher final marks (58% cf 42%) – $(F = 18.49; p = 0.000)$
- Had a higher course average (68% cf 48%) – $(F = 24.00; p = 0.000)$
- Lived at an address with a higher socio-economic index (IRISAD) score – $(F = 5.85; p = 0.017)$
- Were more likely to be studying part-time – (chi sq = 3.0927; p = 0.079)
- Were more likely to be domestic students – (chi sq = 8.3288; p = 0.004).

Factors affecting final marks before correcting for selectivity bias

Final marks
- Increase with
 - Discount rate (b = 39.8244)
 - Tutorial attendance (b = 5.4560)
- Decrease with
 - Discount rate x tutorial attendance (b = -3.3876), that is, the positive effect of tutorial attendance on final marks is more than offset by the negative effect of high discount rates

Correcting for selectivity bias

- Omitted variable problem - omitted variable can be proxied by inverse Mills ratio (Heckman 1979)
- The ‘two steps’ but taken together
 - Run the selection (into the sample) equation using probit with all observations to produce the constructed values of the inverse Mills ratio, λ
 - Run the outcome equation using ordinary least squares where the RHS variables include the constructed values of the inverse Mills ratio, λ, with the sample observations only
 - λ represents the correlation between the unobservables in the selection and outcome equations

Factors affecting selection

Probit model
- n = 381; pseduo $R^2 = 0.1263$; LL = -215.8726
- Age – older students are more likely to submit consistent surveys (b = 0.0319)
- Weighted course average – better (more able) students are more likely to submit consistent surveys (b = 0.0293)

Factors affecting final marks after correction for selectivity bias (substantive model)

OLS model
- n = 381; Wald chi$^2 = 21.67$; LL = -741.7663
- lambda = -18.3601, that is unobserved characteristics that result in some students being less likely to be surveyed also contribute to some students having higher final marks

Final marks
- Increase with
 - Discount rate (b = 25.3955)
 - Tutorial attendance (b = 3.2693)
- Decrease with
 - Discount rate x tutorial attendance (b = -2.1443), that is, the positive effect of tutorial attendance on final marks is more than offset by the negative effect of high discount rates

Much ado about nothing?

<table>
<thead>
<tr>
<th></th>
<th>OLS without correction for selectivity bias</th>
<th>OLS with correction for selectivity bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discount rate</td>
<td>$b = 39.8244$</td>
<td>$b = 25.3655$</td>
</tr>
<tr>
<td>Tutorial attendance</td>
<td>$b = 5.4560$</td>
<td>$b = 3.2693$</td>
</tr>
<tr>
<td>Interactive term</td>
<td>$b = -3.3878$</td>
<td>$b = -2.1443$</td>
</tr>
</tbody>
</table>
Take home message

• Interventions can be evaluated with survey data
• But .. ensure there is a hold-out / control group
• Check for selection bias
 – May change which are the important variables and their sign
 – May change their magnitude
 – May not change anything much