2015

Integrating psychosocial care into neuro-oncology: Challenges and strategies

Suzanne K. Chambers
Edith Cowan University

L. Grassi

M.K. Hyde

J. Holland

J. Dunn

10.3389/fonc.2015.00041

This Journal Article is posted at Research Online.
Integrating psychosocial care into neuro-oncology: challenges and strategies

Suzanne K. Chambers[^1^,^2^,^3^,^4^,^5^], Luigi Grassi[^6^], Melissa K. Hyde[^1^,^2^], Jimmie Holland[^7^] and Jeff Dunn[^1^,^2^,^8^,^9^]

The Health Burden of Brain Tumors

It was estimated that there were approximately 256,000 cases of malignant brain and nervous system cancer (ICD-10 codes C70-C72) diagnosed worldwide during 2012 (age standardized rate of 3.4/100,000) and 189,000 deaths (2.5/100,000) (1). The incidence rate of cancers of the brain and nervous system was almost double in more developed countries compared to less developed countries (5.1/100,000 and 3.0/100,000, respectively) and was higher for males (3.9/100,000) than females (3.0/100,000). Five-year prevalence was 343,000 in total. This disease carries a heavy psychosocial burden (2, 3), and often occurs at the age of middle adult life with 41% of brain tumor patients globally aged younger than 50 years (median age range of 55–59 years) (1). The middle adult life stage is a time of potential generativity (4), such that the loss of function and loss of life from an individual, family, community and economic perspective is substantial.

Patients with brain tumor suffer from a high rate of psychiatric and psychological disorders that are quite specific and distinct from other areas of psycho-oncology. In fact, unlike systemic effects of other tumors and treatment, brain tumors have a direct effect on brain functioning affecting cognition, mood, and personality, with profound changes in mood and cognition and impairments in several dimensions of functioning (5) and quality of life (6–8). A series of data have been collected regarding the effects of primary brain tumors on individual psychological functioning and psychosocial dimensions. The most significant and common disorders regard cognitive dysfunction, affecting about 70% of the patients. Disorders of memory, attention, and concentration have been described, with a tendency to worsen as the lesion increases or invades CNS areas. Acute confusional states (i.e., delirium) are also common neurocognitive complications of brain tumors. Clinically, some dysfunctions and symptoms are described in terms of “specific” syndromes, such as frontal lobe syndromes (caused by tumors in the frontal lobe) with several manifestations, including agitation, behavioral disruption and emotional lability (e.g., orbitofrontal disinhibited syndrome), psychomotor slowness and apathy (e.g., mesial frontal apathetic syndrome), and disorders of the executive functions, perseveration, and psychomotor slowing (e.g., dorsolateral prefrontal dysexecutive syndrome); temporal lobe syndrome, with impairment of verbal and non-verbal memory and seizures (9). A further major challenge of these disorders, and in neuro-oncology in general, is represented by a frequently undetected and under-recognized possible effect of psychiatric disorders, mainly cognitive impairment, in reducing patients’ mental capacity with problems in providing informed consent (10, 11).

Further syndromes related to brain tumors that have to be taken into account regard mood disorders, including depression and mania (25–30%), anxiety disorders (15–70%), changes...
in personality traits (sometimes subtle in the beginning phase, sometimes abrupt and dramatic), and psychotic disorders (12). Significant neuropsychiatric disorders may be the consequence of intervention, including surgery, radiotherapy, and, especially, drugs (e.g., psychotic syndromes and behavioral disorders secondary to corticosteroids) (13). Evaluation of patients’ symptoms, by conducting a careful neuropsychological and psychiatric assessment, is mandatory in clinical settings in order to provide the most proper psychopharmacological (e.g., antidepressants, anticonvulsants, antipsychotics) and psychotherapeutic intervention. With regard to the latter, the need for specific educational, supportive, and psychosocially oriented intervention for the patients’ families has also been repeatedly underlined (14–16). However, a recent review concluded that the research to date on the complex needs of brain tumor patients and how to best help them is limited in scope, with little attention to how to provide supportive care (17). This gap also extends to survivorship care and planning.

CANCER SURVIVORSHIP, STIGMA, AND SOCIAL REPRESENTATIONS OF ILLNESS

The National Cancer Institute defines cancer survivorship as focusing on the health and life of a person with cancer from diagnosis and treatment until end of life, including the physical, psychosocial, and economic issues of cancer through the balance of his or her life. Within this definition, the experience of family members, friends, and caregivers are also considered relevant (18). The language applied within this discourse is intended to be empowering, signaling a shift from cancer “victim” terminology to a survivor framework. However, not all people who have had cancer perceive themselves to be a cancer survivor (19), and some suggest that this label marginalizes those who have a poor prognosis or high cancer-related morbidities (20, 21).

Stigma is when a person is seen by society as tainted, damaged, or less valuable as a result of an attribute or characteristic (22). Stigmatizing marks can be linked to appearance (e.g., physical appearance or overt behavioral differences) or group membership (e.g., race or religion), and it is relationship and context specific (23). In health, stigma is reported to be higher for illnesses that are linked to modifiable lifestyle factors (e.g., smoking, drug or alcohol abuse, sexual activity), disfigurement or outward signs of illness, or a painful death (24). For example, cervical cancer has been reported as stigmatizing on the basis of its relationship with human papilloma virus and from this inferred sexual activity (25). People with lung cancer report feeling stigmatized based on the connection between smoking and lung cancer, as well as the high morbidity and mortality of the disease (24). The changes in facial appearance that may accompany head and neck cancer have been linked to stigma in this patient group (26) and patients with Parkinson’s disease who have facial masking are more negatively judged than those with normal expressivity (27). Finally, epilepsy is reported as being globally one of the most stigmatizing health conditions, linked to perceptions of it as being unpredictable, unattractive and violent, and representative of mental illness (28, 29).

Hence, although it is suggested that stigma about cancer in general has declined over the past four decades (30), some patient groups still experience stigma. People with brain tumors may experience stigma as a result of the cognitive, behavioral, and physical changes that may result from the tumor or treatment, as well as fears about a cancer that for some may have a poor outcome. Brain tumor patients therefore may experience social stigma as a result of their cognitive and neurological symptoms, and this may deepen these patients’ sense of social isolation and discrimination (31). Within this, the perception of a brain tumor as “mind-body” illness may be stigmatizing for both the patient and their family. In some cultures, this effect is worsened by lay beliefs about the causes of illness. For example, in a qualitative study in Bangalore, people with glioblastoma reported that their illness was a punishment from God for previous sins, or Karma, or a result of black magic (32). Palese et al. proposed that patients with frontal lobe neoplasms may be more at risk of stigma and having their problems underestimated by nurses than those with other cerebral neoplasms (33). However, findings were mixed with a tendency for nurses to overestimate problems more common. It is perhaps surprising, however, how little research has been undertaken about health-related stigma in brain tumor patients and how this affects their lives and their access to and utilization of health care services.

In this regard, stigma is connected to poorer outcomes in life across the domains of health, education, and access to social resources and in the case of people with stigmatized health conditions contributes to higher subjective distress about their illness (34). It is well accepted that there is a stigma around mental illness in Western culture (35, 36), and it has been further suggested that this stigma is also a barrier to cancer patients seeking and obtaining help for the distress associated with cancer (37). This means that patients who have a stigmatizing cancer may be doubly disadvantaged: more distress and less help. In addition, a broader health sector outcome of stigma [that has been well discussed in lung cancer (38)] is that stigmatized conditions may be underfunded for research and services. Consistent with this, in 2004 in the House of Commons John Brecow, the Chair of the brain tumor All Party Parliamentary Group made the point that “the issue of brain tumors is under-debated, under-reported, and under-funded. In this Parliament, the issue has attracted minimal – dare I say it, derisory – attention.” In this context, quality frameworks for health service delivery can play a crucial role in evening the playing field.

GUIDELINES AND QUALITY STANDARDS FOR PSYCHOSOCIAL CARE

Psycho-oncology and psychosocial oncology are, relative to biomedical treatments for cancer, a recent development in modern cancer care. Surgical treatment was the forerunner of cancer treatment, an approach that became more widely possible in the nineteenth century with the development of anesthesia and the first successful brain tumor surgical removal reported in 1879 (39). At the beginning of the twentieth century radiation therapy emerged as a cancer treatment (40), followed in 1940s by chemotherapy (41). By contrast, although the psychosocial care of people with cancer arguably does not hinge on technological advancement, the emergence of this field followed decades later, perhaps best heralded by the formation in 1984 of the International Psycho-Oncology Society (IPOS). IPOS led the mission to improve the care of cancer patients and their families globally by promoting the science of psycho-social and behavioral oncology (42) and the
Neuroscience Nurses also specifically address nursing assessment in cancer brain tumor association and the american association of neuropsychiatry services advised for patients who require special. This approach of psychological assessment and support as an integral part of the management of patients with brain tumor is also advised elsewhere with referral to neuropsychology and psychological services. For cancer survivors, this approach is recommended to guide referral to the appropriate level of care, or stepping up of care as needed. The distress thermometer is an ultra-brief screening measure that has been widely validated globally across cultures and tumor sites and found to be a reliable first-line screening measure. It is recommended to guide referral to the appropriate level of care, or stepping up of care as needed.

STEPPED CARE MODELS

One approach to this problem has been to develop care frameworks that show how services articulate across levels of distress and that focus on delivering the most in-depth (and expensive) services to those who need them most. A tiered approach facilitates stepped services to need through screening, triage and referral to different levels of intervention appropriate to each patient. At the most basic level, psychosocial care would include cancer-related information and brief support from a health care professional in the treatment team; cancer-related telephone helpline and other information focused interventions. Those with higher levels of distress that require more specific psychological interventions, including people with pre-existing vulnerabilities or complex problems (e.g., neurocognitive deficits) are referred to more intensive, specialized, or multidisciplinary approaches. Transition to more specialized and in-depth levels of care is guided by standardized distress screening, as per the best practice internationally, and interview assessment by the treating health professional. A stepped care approach delivers in that a decision analytic approach is applied with systematic identification of high need patients followed by an integrated treatment program where cancer is stepped up progressively until the problem is resolved. These approaches have not yet to our knowledge been applied to people with brain tumors; however, the articulation of a tiered or stepped care model for this patient group that incorporates specific needs of brain tumor patients seems warranted.

All such models are predicated on applying screening for distress to guide referral to the appropriate level of care, or stepping up of care as needed. The distress thermometer is an ultra-brief screening measure that has been widely validated globally across cultures and tumor sites and found to be a reliable first-line screening tool for detecting psychological distress in cancer patients. This measure includes a problem checklist and a single item asking the patient how much distress they have been experiencing in the past week including the current day on a scale of 0, no distress to 10, extreme distress. Although the most common recommended cut-off for this scale is >4, in the case of people with intracranial tumors a cut-off of >6 has been reported as having optimal sensitivity for detecting distress. A key feature of these models is that they are practical, translatable and can be applied in a range of settings including hospitals, clinics, and community-based programs. However, there are challenges to implementing these models, including the need for workforce development, the need for ongoing evaluation and refinement, and the need to ensure that these models are adapted to the specific needs of different populations and contexts. Despite these challenges, stepped care models offer a promising approach to improving access to and quality of psychosocial care for patients with brain tumors.
advantage of the distress thermometer is that it is short and easy to administer and score thus making it ideal for translation into acute settings. Other researchers have found the two item Patient Health Questionnaire-2 (65) to have acceptable psychometric properties for detecting moderate to severe psychological distress in brain tumor patients (66). In contrast, Rooney et al. (67) have recommended longer scales and in particular the Hospital Anxiety and Depression Scale (68) and Patient Health Questionnaire-9 (69) for detecting major depressive disorder in well-functioning glioma patients as a preceding step to more in-depth clinical assessment (67). The important question of how screening for neurological and cognitive impairment can be undertaken in these patients alongside distress screening, particularly in settings where specialist staff may not be easily accessed, is a key future question for both researchers and health care providers.

CONCLUSION

There is a need for a comprehensive model of survivorship care for people affected by brain tumor and their families and this should be a priority for neuro-oncology (Figure 1). Given the more advanced stage of development of such care in other cancers, there is a platform of existing knowledge upon which neuro-oncology practitioners may build. This includes screening for distress with referral as needed into stepped and evidenced-based care models. However, although clinical care guidelines specifically for people with brain tumors are emerging, there is a scarcity of intervention research in the field. There is a clear need for a strategic focus on knowledge generation around survivorship for this patient group.

REFERENCES

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 12 November 2014; accepted: 04 February 2015; published online: 23 February 2015.
This article was submitted to Neuro-Oncology, a section of the journal Frontiers in Oncology.
Copyright © 2015 Chambers, Grassi, Hyde, Holland and Dunn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.