2006

Clustering Spatial Data for Join Operations Using Match-based Partition

Jitian Xiao

Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

Part of the Computer Sciences Commons

Recommended Citation

10.1109/CIMCA.2005.1631513

© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1880
Clustering Spatial Data for Join Operations Using Match-based Partition

Jitian Xiao
School of Computer and Information Science, Edith Cowan University,
2 Bradford Street, Mount Lawley, WA 6050, Australia
E-mail: j.xiao@ecu.edu.au

Abstract

The spatial join is an operation that combines two sets of spatial data by their spatial relationships. The cost of spatial join could be very high due to the large sizes of spatial objects and the computation-intensive spatial operations. In spatial join processing, a common method to minimize the I/O cost is to partition the spatial objects into clusters and then schedule the processing of the clusters such that the number of times the same objects to be fetched into memory can be minimized. In this paper, we propose a match-based approach to partition a large spatial data set into clusters, which is computed based on the maximal match on the spatial join graph. Simulations have been conducted and the results have shown that, when comparing to existing approaches, our new method can significantly reduce the number of clusters produced in spatial join processing.

1. Introduction

The spatial join is a common spatial query type that requires a high processing cost due to the large volume of spatial data and the computation-intensive spatial operations. Spatial join queries usually access a large number of spatial data.

To reduce the CPU and I/O costs for spatial join processing, most spatial join processing methods are performed in two steps (i.e., filter-and-refine approach). The first step chooses pairs of data that are likely to satisfy the join predicate. The second step examines the predicate satisfaction for all those pairs of data passing through the filtering step.

During the filtering step, a conservative approximation of each spatial object is used to eliminate objects that cannot contribute to the join result, and a weaker condition for the spatial predicate is applied on the approximations. This step produces a list of candidates that is a superset of the joinable candidates. These candidates are usually represented as pairs of object identifiers. All candidates are then checked in the refinement step by applying the spatial operation on the full descriptions of the spatial objects to eliminate the “false drops”. The join cost can be reduced because the weaker condition is usually computationally less expensive to evaluate and the approximations are small in size than the full geometry of spatial objects.

The filtering algorithms were well studied [2, 3, 4]. However, using the same weaker condition, different filtering algorithms will produce candidates in different orders. Such differences can influence significantly on the refinement cost [4]. It is necessary to cluster the candidate set of the filtering result in order to reduce the I/O cost of the refinement step [3].

Let S and T be the two spatial database tables for spatial join operation, denoted by $S \times T$. Objects in S and T are indexed by their unique IDs. The spatial data of these objects can have different sizes, i.e., they are non-uniform sized. The filter operation of the spatial join produces a set of pairs of S and T objects. Let P be the set of ID pairs produced by the filter operation:

$F = \{ (sid, tid) | sid \text{ and } tid \text{ are IDs of objects in } S \text{ and } T, \text{ respectively, that meet the weaker join condition} \}$

where an ID pair $(sid, tid) \in F$ is called a candidate. Figure 1 (a) shows an example of F. Note that F is available in the main memory after the filter operation. F contains only IDs of the candidates, not the data objects.

The refinement step is to perform $S \times T$ on the pairs of objects indexed by F to produce the final join results. At this step, the S and T objects need to be fetched into the main memory for the full spatial join test. Since some candidates may have join operation with several others, it needs to be fetched several times into the memory for the join operations. Taking the example of Figure 1 (a), B1 has join relation with A1, A2 and A5. After the join operation with A1 and A2, it may need to be fetched into the memory again when it joins with A5, if it was flushed out of the memory.
Our method is to cluster the objects into groups and then fetch objects in the same group into the memory for processing in a batch. The number of times an object to be fetched can thus be reduced.

It is very important to reduce the I/O cost of fetching the full geometry of spatial objects, because it contributes a significant portion of the total cost of performing a spatial join operation. To consider the I/O cost, we take the spatial object size into account. The spatial object sizes can differ greatly from one to another. For example, while a spatial point object occupies only several bytes of storage, a large polygon object in a road map may have up to tens of thousands of edges that occupy several megabytes of storage. The I/O cost, in this paper, is measured in terms of the size of spatial data that are fetched into the memory for the refinement operation.

The rest of the paper is organised as follows: Section 2 describes a graph model to characterize the spatial data clustering problem. Section 3 proposes a match based method to partition spatial objects into clusters. Section 4 analyses the complexity of the proposed algorithm. Section 5 presents our simulation results, and Section 6 concludes the paper.

2. Clustering spatial join operations over graph model

For a given candidate set \(F \), we introduce a weighted graph \(G_F = (V, E, w) \), called Spatial Join (SJ) graph, to represent the join relationships between spatial objects referenced in \(F \). Intuitively, the node set \(V \) contains all pairs of IDs in \(F \), i.e., each node corresponds to a join operation between a pair of objects. The edge in the SJ graph \(G_F \) is to reflect the overlapping status of the objects between different join operations represented by the nodes. Formally, \(V = \{(v_1, v_2) \mid (v_1, v_2) \in F\} \), and \(E = \{(\{v_1, v_2\}, \{u_1, u_2\}) \mid (v_1, v_2) \in F, \{v_1, v_2\} \cap \{u_1, u_2\} \neq \emptyset\} \). The weight of an edge \(e = ((v_1, v_2), (u_1, u_2)) \) is defined as the size of the object overlapped between \(\{v_1, v_2\} \) and \(\{u_1, u_2\} \), i.e., \(w(e) = \text{size}(x) \) if \(x = \{v_1, v_2\} \cap \{u_1, u_2\} \). Note that \(|\{v_1, v_2\} \cap \{u_1, u_2\}| \leq 1 \) since different pairs of IDs in \(F \) are distinct. For example, the object sizes of the candidates in \(F \) of Figure 1 (a) are given in Figure 1 (b). Figure 1 (c) shows the corresponding SJ graph with weights shown beside edges.

Let \(V_C \) be the set of candidates referenced in \(F \), i.e., \(V_C = \{x \mid \exists v: (x, v) \in V \text{ or } (v, x) \in V\} \). The total I/O cost, \(C_{I/O} \), of fetching objects referenced in \(F \) varies in the range of

\[
\sum_{x \in F} \text{size}(x) \leq C_{I/O} \leq \sum_{(v, x) \in F} (\text{size}(v_1) + \text{size}(v_2))
\]

The lower bound is achieved when each object is fetched only once, and the upper bound is met where an object is fetched every time when it is referenced.

To reduce \(C_{I/O} \), our strategy is to group objects referenced in \(F \) into clusters such that objects inside a cluster are more likely to join with each other than those across clusters. The objects in the same cluster are brought into the memory together and processed in a batch. To achieve this, we partition \(V \) into \(m \) subsets \(V_1, V_2, \ldots, V_m \) such that \(V_i \cap V_j = \emptyset \) for \(i \neq j \). Let \(E_i = \{(v_1, v_2), (u_1, u_2)\} \mid \{v_1, v_2\}, \{u_1, u_2\} \in V_j \), \(i = 1, 2, \ldots, m \). Then \(G_i = (V_i, E_i) \) is a subgraph of \(G_F \). Let \(q \) be the maximum memory capacity that is used to hold spatial objects for refinement operation. For any \(G_i, 1 \leq i \leq m \), the total size of objects in \(G_i \) must be less than or equal to \(q \), i.e.,

\[
\sum_{v \in V_i} \text{size}(v) \leq q \tag{1}
\]

where \(c_i = \{x \mid \exists v: (x, v) \in V_i \text{ or } (v, x) \in V_i\} \) is the set of objects referenced in \(V_i \), called the \(i \)-th cluster. We assume that the total size of each pair of objects referenced in \(F \) must be less than or equal to \(q \); otherwise no solution exists.

The objects in a cluster are fetched together into memory for processing, and are thrown away when the next cluster is processed. Therefore, the total I/O cost can be expressed as

\[
C_{I/O} = \sum_{v \in V_C} |\{j \mid v \in c_j\}| \cdot \text{size}(v) \tag{2}
\]

or

\[
C_{I/O} = \sum_{v \in V_C} \text{size}(v) + \sum_{v \in V_C} (|\{j \mid v \in c_j\}| - 1) \cdot \text{size}(v) \tag{3}
\]

where \(|\{j \mid v \in c_j\}| \) denotes the total number of clusters that contains object \(v \). Let \(y \) be

\[
y = \sum_{v \in V_C} (|\{j \mid v \in V_j\}| - 1) \cdot \text{size}(v) \tag{4}
\]

\(y \) is the total object size that may need to be reloaded for processing objects that appears in more than one cluster, when processing different clusters. If each
object belongs to no more than three clusters, then \(y \) can be simplified as

\[
y = \sum_{v \in V, r_c, s, j} \text{size}(v)
\]

(5)

Since \(\sum_{v \in V} \text{size}(v) \) is a constant, the optimization of \(C_{IO} \) is to find a partition of \(G_F \) such that \(y \) is minimized. The problem of minimizing \(y \) in graph \(G_F \) is \(NP \) complete [5].

3. The match based algorithms for spatial data partitioning

In [1], a matrix-based algorithm was proposed to cluster non-uniformed spatial objects referenced in \(F \) such that the object in the same cluster are closely related (i.e., they are more likely to join with each other). However, when the number of objects becomes larger (say thousands of objects), the space requirement of the matrix-based algorithm increases dramatically. This suggests alternative algorithms that are applicable to cases where a large number of spatial objects are involved in a spatial join.

To ease the discussion, we introduce some terms:

Two partitions, in a given SJ graph, are said to be adjacent (connected) if some of their nodes are adjacent (connected) in the SJ graph. The size of a partition refers to as the total size of objects referenced by nodes in the partition. The weight (of edges) between two partitions is the sum of the weights of edges that connect nodes between the two partitions.

For a given SJ graph \(G_F = (V, E, w) \), where \(V = \{v_1, v_2, ..., v_k\} \), we partition \(V \) by initially taking each node of \(V \) as a partition, and then continually combining two (or more) partitions to form larger ones. The partitioning of \(V \) is commonly represented by a partitioning vector \(P \) of length \(k \), such that for every node \(v \in V \), \(P[v] \) is an integer between 1 and \(m \), indicating the partition to which \(v \) belongs. So combining partitions \(V_i \) and \(V_j \) (into \(V_l \)) can be easily implemented as:

\[
\text{for } (l=1; l<=k; l++) \{ \text{if } (P[l] == j) \ P[l] = i; \}
\]

To minimize \(y \) in (4), we consider two partitioning criteria, i.e., local and global, when selecting partitions to combine. The local criterion aims to select partitions whose combination would cause a greater reduction of \(y \). Consider two partitions \(V_i \) and \(V_j \). Let \(W_{i,j} \) be the weight of edges between \(V_i \) and \(V_j \). If we combine \(V_i \) and \(V_j \) to form a single partition, then the total reduction of \(y \) will be \(W_{i,j} \). Hence, by selecting a pair of partitions that have a greater weight between them, we can decrease \(y \) by a greater amount.

The global criterion takes into account the global effects when combining partitions. Consider two partitions \(V_i \) and \(V_j \), both connecting to \(V_l \) by edges of same total weight. Let \(A_i \) (and \(A_j \), respectively) be the set of adjacent partitions of \(V_i \) (and \(V_j \), respectively) that connect \(V_l \) and \(E_l \) (and \(E_j \), respectively) the total weight of edges between \(V_l \) and \(A_i \) (and \(A_j \), respectively). If \(E_l > E_j \), we combine \(V_i \) and \(V_j \), otherwise \(V_i \) and \(V_j \), to form a new partition, say \(V' \). In this way, we get a greater weight of edges between \(V' \) and its adjacent partitions. This increase the chance to combine partitions of higher weight, thus increase the reduction of \(y \) in the following combinations.

To meet both the local and global criteria we propose a maximal match based partition method to cluster objects over the SJ graph. A match of a graph is a set of edges; any two of them are not incident to the same node. A weighted matching (WM) problem is, for a given graph \(G \), to find a match of \(G \) such that the sum of the edge weights of the match is maximal. The WM problem was solved by J. Edmonds [5] and the complexity of his algorithm is \(O(n^3) \), where \(n \) is the number of nodes of \(G \). The resultant match is called a maximal match of the graph.

Our partitioning method works in the following way: Initially, we have \(m = k \) partitions, each contain one node (of the SJ graph). Then, we reduce \(m \) by combining the existing partitions using maximal match. We employ Edmonds’ algorithm to produce a maximal match from \(G_0 = G_F \), then combine pairwise the matched nodes (or partitions) to form larger partitions. At this point, we construct a coarser graph \(G_t \) which has those newly formed partitions as its nodes (unmatched nodes of \(G_0 \) are copied over to \(G_t \)). The edges between the nodes of \(G_t \) are defined based on their edges in \(G_0 \), as follows: For any pair of nodes (partitions), there is an edge between them. If the two partitions are adjacent (i.e., some of their nodes are adjacent in \(G_0 \), and the total size of the objects referenced in the two partitions is less than or equal to \(q \) (i.e., the maximum memory capacity as defined in formula (1)), the weight between them is set as the weight between the two partitions, otherwise the weight is set as 0, suggesting that the two partitions will not be combined in the following iterations.

\[A \text{ match is maximal if any edge in the graph that is not in the match has at least one of its endpoints matched, and the sum of the edge weights of the match is maximal among all matches of the graph.} \]

1 By definition, each node \(v_i \) of an SJ graph is in the form of \((u'_i, u''_i)\), i.e., a pair of IDs referenced in \(F \).
this point, next round of iteration begins to find a
maximal match from G1. This match-and-combination
process continues until no more matches can be found
or no partitions can be expanded (e.g., combination of
any two partitions would violate formula (1)). The
algorithm can be described as below:

\textbf{Algorithm} matchBasedClustering(G)
\textbf{Input:} G = (V, E, w);
\textbf{Output:} c1, c2, …, c\textsubscript{m}; // clusters of objects referenced in F.
\textbf{Begin}
[1] Find a maximal match M of G using Edmonds’ algorithm;
[2] if no match was found or no pair of matched nodes can be combined
[3] then compute clusters c\textsubscript{1}, c\textsubscript{2}, …, c\textsubscript{m} from V;
\textbf{return}(c\textsubscript{1}, c\textsubscript{2}, …, c\textsubscript{m});
[4] for all matched nodes // Coarsen G by collapsing
matching nodes of M to produce a coarser graph G’
[5] if \(v_i\) and \(v_j\) are a pair of matched nodes, and
\[\sum_{x \in c_i} \text{size}(x) + \sum_{x \in c_j} \text{size}(x) - w(v_i, v_j) \leq q\]
[6] then combine \(v_i\) and \(v_j\) to from a node of G’;
[7] copy matched but unmerged nodes over to G’;
[8] copy unmatched nodes over to G’;
[9] update edges and the weights (of edges) between the
newly formed nodes of G’;
[10] matchBasedClustering(G’);
\textbf{End}

Example 1: To illustrate how the algorithm works,
we explore a part of the execution of the algorithm. Let
\(q=1600\). Figure 2 (a) shows a coarsened graph after
some rounds of recursive execution of the algorithm, in
which each node represents a partition of the original
SJ graph (not presented here). The size of the spatial
objects referenced in a node (partition) is shown beside
the node (i.e., in a square bracket). The number beside
an edge is the weight between the two nodes. For
simplicity, all edges with a weight 0 were not given in
the graph. In the next round of execution, the first step
produces a maximal match \(M\), which has 7 edges, with
a total weight of 875, as shown by thick bold edges in
the figure 2 (a). There is only one unmatched node
(i.e., node labelled by 11) in the graph. Then pairs of
matched nodes (partitions) are combined to form single
nodes of the next level coarsened graph, as shown in
figure 2 (b). \(M\) contains 7 nodes of the graph were formed from
the matched nodes of Figure 2 (a), and only one node was
copied from the unmatched node. By this matching-
and-combination process, the total edge weight was
reduced by 875 (out of 1490).

Similarly, the next round of execution of the
algorithm results in a coarsened graph as shown in
figure 2 (c). During the edge weight update step (i.e.,
in step [6]), the edge weight between the nodes
labelled 5/9/6/10 and one labelled 12/13/14/15 were set
as 0 (although the total size of objects overlapped
between them is 60) because their combination would
result in violation of formula (1). In this way, we
force the algorithm not to match them in the next round
execution of the algorithm if there is any other choice.

The case between the nodes labelled by 7/8/10 and
12/13/14/15 is similar, as shown in dotted lines. The
last round of recursive execution of the algorithm
produces a maximal match containing two edges, of
which only one leads to a combination of the linked
partitions. The other pair of nodes was not combined
because the restriction enforced by the rule of formula
(1). The algorithm output three data clusters: The first
cluster contains all spatial IDs that were originally
referenced by the nodes (partitions) labelled by 1, 2, 3,
4, 5, 6, 9 and 10 in figure 2 (a), of total object size
1576. The second contains all spatial IDs that were
originally referenced by the nodes (partitions) labelled
by 7, 8 and 11, of total object size 470. And the last
one contains those originally referenced by the nodes
(partitions) labelled by 12, 13, 14 and 15. This cluster
has a total size of 1578. The sizes of overlapping
objects between these clusters are 60, 60 and 30,
respectively, as shown in brackets beside edges in
Figure 2 (d).

4. Algorithm analysis

We now analyse the complexity of the algorithm
matchBasedClustering. For a given SJ graph with \(n\)
nodes, line 1 needs at most \(O(n^2)\) time (refer to [5]).
Line 2 needs at most \(O(n^2)\) time as it scans at most
once for each node to find its matching node, and
determine if the matched nodes can be combined. Line
3 needs \(O(n)\) time as it scans the nodes once for each
partition to form the clusters. Lines 5–6 has the
complexity of \(O(n^2)\) because, for each matched node, it
needs no more than once scanning to calculate the
formula and to combine to its matched one to form a
node of the next level coarser graph. So the total
complexity of lines 4–6 is limited by \(O(n^2)\). Both line 7
and line 8 need \(O(n)\) time to complete. Line 9 needs
\(O(n^2)\) because, for each node, it needs at most one scan
to all nodes to update edges, while calculating weights.
of edges between the newly formed nodes of the next level of coarsened graph. Line 10 completes the recursive execution of the algorithm.

Let \(g(n) \) be the complexity function of the algorithm. We analyse both the best case and the worst case. First, consider the best case of the execution (i.e., all nodes in \(G \) were matched in step [1]). Denote \(f(n) \) as the complexity of this case. For an ideal matching, each node is matched, thus the next level of coarser graph has \(n/2 \) nodes. In this case, we can get a recurrence formula for the complexity function as

\[
f(n) = \alpha n^3 + f(n/2) = \alpha n^3 + \alpha (n/2)^3 + f(n/2^3) = \ldots = \alpha (n^3 + (n/2)^3 + (n/4)^3 + \ldots + 1) + f(1)
\]

This equation is valid for any \(n \) that is a power of 2, say \(n = 2k \). Thus, we have

\[
f(n) = \alpha n^3 + f(1) \quad \text{or} \quad f(n) = O(n^3)
\]

If \(n \) is not a power of 2, the recursive execution of the algorithm produces fewer nodes at the next level. Therefore, the complexity function of the algorithm is

\[
f(n) = \frac{n^3}{2} + O(n^3) = \frac{n^3}{2}
\]

Secondly, consider the case where some unmatched nodes produced in step [1], or some matched nodes are not able to be combined in lines 4–7. Denote \(F(n) \) as the complexity of the algorithm in this case. Without loss of generality, we assume that the average number of matching pairs is \(n/4 = (1 + 2 + \ldots + n/2)/(n/2) \). After collapsing, the next level of coarser graph will have \(3n/4 \) multinodes. In this case, we can get a recurrence function as

\[
F(n) = \alpha n^3 + F(3n/4)
\]

where \(F(3n/4) \) is the complexity of the matching and collapsing process on the next level of coarser graph. In the worst case, every recursive execution of the algorithm would produce a (next level) coarser graph whose number of multinodes is about four thirds of that of the current graph. After \(k \) times of recursive execution, either the number of the (multi)nodes of the graph becomes 1, or no further match can be found from the graph. So, for simplicity, we can assume that

![Figure 2. Examples of matching and combination process](image-url)
\[n \cdot \left(\frac{3}{4}\right)^k = 1, \text{ or } n = \left[\frac{4}{3}\right]^k \text{ for some } k. \] According to the recurrent relation of \(F(n) \), we can derive

\[F(n) = \alpha n^3 + F\left(\frac{3}{4} n\right) = \alpha n^3 + \alpha \left(\frac{3}{4} n\right)^3 + F\left(\frac{3}{4}^2 n\right) \]

\[= \ldots \leq \alpha n^3 \left(1 + \frac{3^3}{4^3} + \frac{3^6}{4^6} + \frac{3^9}{4^9} + \ldots\right) = \frac{64}{37} \alpha n^3 \]

or

\[F(n) \leq O(n^3) \tag{7} \]

Following the discussion above, it is not difficult to prove that formula (7) holds for any \(n \) (the proof is omitted here).

As the complexity of our algorithm is always greater than or equal to \(f(n) \), and less than or equal to \(F(n) \), i.e., \(O(n^3) = f(n) \leq g(n) \leq F(n) \leq O(n^3) \), we get

\[g(n) = O(n^3). \]

5. Simulations

The simulation work is to demonstrate the reduction of the I/O costs in spatial join processing by using the matched based data partitioning method against that proposed in [1]. The simulations are conducted with artificial and real world spatial data sets.

Table 1: A comparison: numbers of clusters produced by the matrix-based and match-based partitioning methods

<table>
<thead>
<tr>
<th>Size of candidate set</th>
<th>Average No. of clusters Matrix-based</th>
<th>Match-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>800</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>1200</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>1600</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>2000</td>
<td>59</td>
<td>49</td>
</tr>
<tr>
<td>2400</td>
<td>86</td>
<td>68</td>
</tr>
</tbody>
</table>

In the simulation, two criteria are used to measure the quality of the clusters produced. For the same candidate sets, we first compare the numbers of clusters produced using the two methods, and then compare total size of overlapping objects between clusters produced by the two methods, respectively. In the simulations, the memory capacity (i.e., \(q \) as in formula (1)) varies from 500 to 2000 blocks, and the sizes of the spatial objects vary from 8 to 1654 vertices, with average size of 92 vertices. The following tables show that when the size the candidate set is not vary large, (i.e., hundreds to a thousand), the two methods produced similar results. However, when the candidate set becomes large, the matched based method outperforms the matrix-based method significantly. The total size of overlapping objects between clusters produced by the two methods is almost linear to the number of clusters produced, and thus was not given here. Table 1 shows the simulation results.

6. Conclusion

The spatial join is one of the most important operations in spatial databases. The cost of spatial join could be very high due to the large sizes of spatial objects and the computation-intensive spatial operations. In spatial join processing, spatial objects are usually partitioned into clusters and then processed cluster by cluster. The partitioning step aims to partition objects into clusters such that objects inside a cluster are more likely to join with each other than those across clusters.

This paper proposed a match-based spatial objects partitioning method. We demonstrated that the new methods outperform the existing methods. Simulation results have shown that the match based partitioning method can produce less number of clusters than the method proposed in [1].

References

