Effect of a Polywell geometry on a CMOS Photodiode Array

Paul V. Jansz
Edith Cowan University

Steven Hinckley
Edith Cowan University

Graham Wild
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

Part of the **Engineering Commons**

10.1109/SOCC.2010.5784694

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This Conference Proceeding is posted at Research Online.
IEEE International SOC Conference

September 27-29, 2010
Bally’s
Las Vegas, Nevada, USA.

Editors

Thomas Büechner
IBM Corp.

Andrew Marshall
Texas Instruments

Ramalingam Sridhar
University at Buffalo

Norbert Schuhmann,
Fraunhofer Institute for Integrated Circuits

The SOC Conference is sponsored by the IEEE Circuits and Systems Society
On behalf of the Organizing Committee, I am delighted to welcome you to the 23rd IEEE International SoC Conference (SOCC 2010) in Las Vegas, Nevada.

During the last three decades, application specific microelectronics has grown from a small market to one of the most important economic factors, dominating most parts of our work and life. Consequently, IEEE SOCC and its predecessors IEEE ASIC/SOC and IEEE ASIC have accompanied engineers and engineering managers for more than two of these three decades now, always showing the latest trends of our times.

In the meantime, ubiquitous computing, mobile communication, and their underlying hardware are about to change our society and the way we communicate and interact with each others. While in the nineties of the last century, the rise of the Internet and the “dotcom” revolution were fueling the growing demand for high speed networks and high performance computing, it is now the new and fast growing “always on” generation that drives the development of new devices and applications that have already started to pervade all parts of our daily lives.

You, the engineer of the 21st century, have the responsibility to provide the hardware for this networked society. The integration of an entire system onto a single silicon chip is one of the driving factors behind this electronic revolution and has become a major requirement to tackle the increasing cost of manufacturing those ever shrinking transistors - and to keep Moore’s Law alive for many more years.

From the highly integrated Systems-on-Chip (SoC) needed for smart handheld devices, high definition video processing, home automation, or car electronics, over bio electronics revolutionizing our medicine, to high performance computers to simulate climate change, there is a wide spectrum of applications - and also of knowledge that you need to gain and maintain to stay competitive as an engineer in a global market.

In addition to that, nowadays not only function and performance but also environmental issues play an important role in our industry. Issues like low power consumption, “green” manufacturing, and a low carbon footprint over the whole lifetime of a product are becoming more and more important. The way we are developing and manufacturing our systems today will affect the way we and our children will live in the future - and help us and them to build and shape a smarter planet.

To help you to achieve these goals, SOCC 2010 provides a forum for sharing recent progress and discussing new challenges in SoC research and development, bringing together experts from both industry and academia to discuss and solve critical hardware and software issues in SoC technologies. Our Technical Program Chairs, Prof. Ramalingam Sridhar from the University of Buffalo, and Norbert Schuhmann from the Fraunhofer Institute for Integrated Circuits in Germany have put together a comprehensive technical program covering all aspects of SoC development.

We are as well excited to welcome our distinguished keynote speaker, Prof. Alberto Sangiovanni-Vincentelli, Professor, University of California at Berkeley & Chief Technology Advisor, Cadence Design Systems, our two plenary speakers, Michael Keating, Fellow, Synopsys, Inc, Sandra Woodward, Senior Technical Staff Member, IBM Corp., Jo Dale Carothers, Partner, Covington & Burling LLP and our Luncheon Speaker, P.R.Mukund, President and CEO of NanoArk Corp.

It is worth to mention that even during these times of economic depression, job insecurity and globalization pressure, IEEE SOCC continues to be a stable and reliable source for you to stay competitive in a rapidly changing engineering environment. I am especially proud that this year we were able to increase the number of paper submissions, in spite of the trend we see at many other
conferences. Being able to select the best papers from a large number of high quality submissions helps us to maintain the quality that our conference attendees are expecting from us.

Therefore, my first and sincerest thanks go to our authors and attendees. This conference is made for you and it is first and foremost you who make this conference a success.

I also would like to express my sincere gratitude to the members of the Organizing, Technical Program, and Local Committees. Without your generous contribution of time and effort this conference would not have happened.

In this spirit, I wish you all a productive and enjoyable stay in Las Vegas

Thomas Büchner
IBM Germany Research & Development
SOCC 2010 General Chair

Andrew Marshall
Texas Instruments
SOCC 2010 General Co-Chair
Message from Technical Chair

On behalf of the Technical Program Committee we welcome you to the 23rd IEEE International System-on-Chip (SOC) Conference (SOCC 2010), held this year in Las Vegas, Nevada, USA. This Conference has grown along with the tremendous growth of ASICs and System on Chips over the years. This conference continues to be a premier forum for education and dissemination of new ideas and research in all aspect of System on Chips.

We understand the importance of a strong technical program to the success of the conference, and hence we strive hard to bring quality to the program and value to the conference attendees. We are thankful to all the area track chairs and co-chairs, for their valuable time and hard work in putting together this technical program that addresses many facets of SOC technology, design and applications. Quality submissions and review will not be possible without the help of our Technical Program Committee members and 115 reviewers. This year we received a total of 150 high quality submissions from 24 countries, from which we have selected 62 papers for regular presentation and 29 for poster presentation. Regrettably, many of the papers of high quality could not be accommodated due to time and space limitations.

The program comprises of two plenary sessions, one on Monday and the other on Wednesday, fifteen technical sessions in two parallel tracks, three embedded tutorials, a poster session and a panel discussion. We are privileged to have many eminent speakers with enormous experience in diverse topics of SOC to be participating as the Keynote, Plenary and Luncheon speakers and as panelists in the panel discussion. We are very thankful to Dr. Alberto Sangiovanni-Vincentelli, who has been at the forefront of VLSI and SOC for many decades, and has a unique perspective as a highly accomplished Professor of University of California at Berkeley and as the co-founder of two of the most successful CAD companies, Cadence and Synopsys. The first plenary speaker, Michael Keating, Synopsys Fellow, with expertise in IP based design, low power and reuse methodology will focus on code-based scalable design, whereas the second plenary speaker with expertise in the area of Microprocessor and Memory Hierarchy Architecture will talk about technical challenges of a large complex SOC (PowerEN) for next generation systems. Our luncheon speaker Dr. P. R. Mukund and the third plenary speaker Dr. Jo Dale Carothers both return to SOC Conference in their new role after many years of service to this conference. Dr. Mukund will talk about his novel venture in using Silicon wafers to store and preserve archival manuscripts. Dr. Carothers in her new role as a legal professional in Intellectual Property litigation talks about our role in patent litigation. Our panel with participation from many of these experts and others will focus on the importance of software and hardware in future SOC designs. We are confident that the entire program will provide the audience with great value and vision of the future directions of the SOC.

We also thank the entire Organizing committee for their numerous contributions throughout the development of this program. Also, we thank Wendy Walker for her administrative support.

SOCC is sponsored by the IEEE Circuits and Systems Society

Ramalingam Sridhar,
University at Buffalo, The State University of New York, Buffalo, NY
SOCC 2010 Technical Program Chair

Norbert Schuhmann,
Fraunhofer Institute for Integrated Circuits, Germany
SOCC 2010 Technical Program Co-Chair
PROGRAM-AT-A GLANCE

Monday, September 27

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>7:00 a.m. – 5:00 p.m.</td>
</tr>
<tr>
<td>Plenary Session</td>
<td>8:30 a.m. – 12:00 noon.</td>
</tr>
<tr>
<td>Open Lunch</td>
<td>12:00 noon – 1:00 p.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>1:00 p.m. – 2:40 p.m.</td>
</tr>
<tr>
<td>Embedded Tutorial</td>
<td>2:55 p.m – 3:45 p.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>3:45 p.m. – 5:00 p.m.</td>
</tr>
<tr>
<td>Embedded Tutorial</td>
<td>5:00 p.m. – 6:00 p.m.</td>
</tr>
</tbody>
</table>

Tuesday, September 28

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>7:30 a.m. – 5:00 p.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>8:00 a.m. – 9:40 a.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>9:55 a.m. – 12:00 noon</td>
</tr>
<tr>
<td>Luncheon Speaker</td>
<td>12:00 noon – 1:30 p.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>1:30 p.m. – 4:15 p.m.</td>
</tr>
<tr>
<td>Poster Session & Reception</td>
<td>4:15 p.m. – 6:00 p.m.</td>
</tr>
<tr>
<td>Panel Discussion</td>
<td>6:00 p.m. – 7:30 p.m.</td>
</tr>
</tbody>
</table>

Wednesday, September 29

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>8:00 a.m. – 3:30 p.m.</td>
</tr>
<tr>
<td>Plenary Session</td>
<td>8:00 a.m. – 8:50 a.m.</td>
</tr>
<tr>
<td>Embedded Tutorial</td>
<td>8:50 a.m. – 10:05 a.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>8:50 a.m. – 10:05 a.m.</td>
</tr>
<tr>
<td>Technical Sessions</td>
<td>10:20 a.m. – 12:25 p.m.</td>
</tr>
<tr>
<td>Open Lunch</td>
<td>12:00 p.m. – 1:00 p.m.</td>
</tr>
<tr>
<td>Technical Sections</td>
<td>1:00 p.m. – 2:40 p.m.</td>
</tr>
<tr>
<td>Conference ends</td>
<td>2:40 p.m.</td>
</tr>
</tbody>
</table>
2010 SOCC ORGANIZING COMMITTEE

Conference General Chair
Thomas Büchner, IBM Corp.

Conference General Co-Chair
Andrew Marshall, Texas Instruments

Technical Program Chair
Ramalingam Sridhar, University at Buffalo

Technical Program Co-Chair
Norbert Schuhmann, Fraunhofer IIS

Publicity Chair
Kaijian Shi, Synopsys

Workshop/Tutorial Chair
Nagi Naganathan, LSI Corporation

Steering Committee Chair
Suhwan Kim, Seoul National University

Asia Liaison
Sao-Jie Chen, National Taiwan University

LOCAL COMMITTEE

Local Arrangements
Venkatesan Muthukumar
University of Nevada Las Vegas

Local Arrangements
Emma Regentova
University of Nevada Las Vegas

2010 SOCC STEERING COMMITTEE

Chair: Sakir Sezer, Queens University, Belfast

Members
Thanh Tran, Texas Instruments
Thomas Büchner, IBM Corp.
Andrew Marshall, Texas Instruments
Ramalingam Sridhar, University at Buffalo
Norbert Schuhmann, Fraunhofer IIS
Suhwan Kim, Seoul National University
Ram Krishnamurthy, Intel Corporation
P.R. Mukund, Rochester Institute of Technology
2010 Technical Program Committee

Emrah Acar IBM Austin Research Lab.
Syed M. Alam Everspin Technologies
Tuğrul Arslan University of Edinburgh, Scotland, UK
Gerd Ascheid University of Aachen, Germany
Jürgen Becker University of Karlsruhe
Jay Bhadra, Freescale
Thomas Büchner IBM Böblingen Development Lab, Germany
Hung-Ming Chen National Chiao Tung University, Taiwan
Sao-Jie Chen National Taiwan University
Vassilios Chouliaras Loughborough University, UK
Koushik K. Das IBM T.J. Watson Research Center
Alex Doboli SUNY at Stony Brook
Praveen Elakkumanan, IBM Corp.
Ahmet Erdogan University of Edinburgh, Scotland, UK
Eby G. Friedman University of Rochester
Vincent Fusco Queen's University Belfast, UK
Dong Ha Virginia Tech
Ken Hsu Rochester Institute of Technology
Suhwan Kim Seoul National University, Korea
Yong-Bin Kim Northeastern University
Argy Krikelis Altera
Ram Krishnamurthy Intel Corporation
Hsien-Hsin Lee Georgia Institute of Technology
Zhonghai Lu KTH, Stockholm, Sweden
Wayne Luk Imperial College London, UK
Gin-Kou Ma ITRI, Taiwan
Nihar Mahapatra Michigan State University
Liam Marnane University College Cork, Ireland
Andrew Marshall Texas Instruments
Sanu Mathew Intel Corporation
Kieran Mc Laughlin Queen's University Belfast
P.R. Mukund Rochester Institute of Technology
Venkatesan Muthukumar, UNLV, Las Vegas
Nagi Naganathan LSI Corp.
Maire O'Neill Queen's University Belfast
Maurizio Palesi University of Catania, Italy
Nuria Pazos Escudero Univ. of Applied Sciences Arc, Switzerland
Emma Regentova, UNLV, Las Vegas
Mark Schrader, Carestream Health
Norbert Schuhmann Fraunhofer Institute for Integrated Systems, Germany
Radu M. Secareanu Freescale
Tiberiu Seceleanu University of Turku, Finland
Sakir Sezer Queen's University Belfast
Kaijian Shi Synopsys, Inc
Jerry Sobelman University of Minnesota
Hongjiang Song Intel Corporation
Ramalingam Sridhar University at Buffalo
Thanh Tran Texas Instruments
Lei Wang University of Connecticut
Yuejian Wu Nortel
Darrin Young Case Western Reserve University
Danella Zhao University of Lousiana at Lafayette
List of Reviewers
The SOCC Technical Program Committee would like to thank the following people for their assistance in reviewing this year’s paper submissions

Emrah Acar Dong Ha Sandip Ray
Ali Ahmadinia Wei Han Emma Regentova
Syed Alam Gareth Howells Oliver Sander
Abbes Amira Pao-Ann Hsiung Ioannis Savidis
Tughrul Arslan Ken Hsu Mark Schrader
Gerd Ascheid Wei Hwang Radu Secareanu
Richard J. Auletta Xabier Iturbe Tiberiu Secleanu
Nizamettin Aydin Renatas Jakushokas Jih-Sheng Shen
Asral Bahari Kadim Jawad Kaijian Shi
Murat Becer Sharath Jayaparakash Jerry Sobelman
Juergen Becker Fen Jin Hongjiang Song
Jay Bhadra David Kammler Pinping Sun
Mrinal Bose Didier Keymeulen Savithri Sundareswaran
Jeff Bostak Kyung Ki Kim Jaya Suseela
Ahmed Bouridane Suwan Kim Jian Tang
Lars Braun Woo Jin Kim Rui Tang
Thomas Buechner Yong-Bin Kim Wei Tao
Anupam Chattopadhyay Selcuk Kose Corey Tsai
Hung-Ming Chen Ram K. Krishnamurthy Rao Vaddina
Sao-Jie Chen Dhiresha Kudithipudi Bo-Hsuan Wang
Kyeongsoo Cho Khalid Latiff Chua-Chin Wang
Minsu Choi Zong-Fu Li Zhongfeng Wang
Vassilios Choularas Lingzhi Liu Ruizhe Wu
Zhe Cui Renfei Liu Yuejian Wu
Zhiqiang Cui Chun-Hsien Lu Yuan Xie
Koushik K. Das Zhonghai Lu Wei-Lien Yang
Satyendra Datla Nihar Mahapatra Yinghua Yang
Uwe Deidersen Liam Marnane Darrin Young
Alex Doboli Andrew Marshall Mohammed Iqbal Younus
Praveen Elakkumanan Sanu Mathew Fengming Zhang
Ahmed El-Rayis Kieran McLaughlin Jingyi Zhang
Ahmet Erdogan Andreas Minwegen Ruochi Zhang
Nuria Pazos Escudero Alicia Morales Danella Zhao
Khodor Fawaz Venki Muthukumar Xin Zhao
Eby G. Friedman Nagi Naganathan Virgilio Zuniga
Vince Fusco Renato Negra Mohammed Iqbal Younus
Guy Gagniat Ethiopia Niguessie Fengming Zhang
Kaushal Gandhi Maurizio Palesi Jingyi Zhang
Fuding Ge Ravi Patel Ruochi Zhang
Diana Goehringer Venkatesh Ramakrishnan Danella Zhao
TABLE OF CONTENTS

Section MPL – Plenary Session

General Chair: Thomas Büchner, IBM
Co-Chair: Andrew Marshall, Texas Instruments

Keynote Presentation:
SoC Design as an Example of Component-Based Design of Distributed Systems
Alberto Sangiovanni Vincentelli, Professor, University of California at Berkeley, and Chief Technology Advisor, Cadence Design Systems

Plenary Presentation:
Third Revolution: The Search for Scalable Code-Based Design
Michael Keating, Fellow, Synopsys, Inc.

Plenary Presentation:
A Wire-Speed Processor System-on-a-Chip (SOC): Technical Overview and Challenges for a Large Complex SOC used in Next-Generation Systems
Sandra Woodward Senior Technical Staff Member, Prism WSP SOC Chip Technical Lead IBM Corp.

Session MA3 – SoC Power Optimization Techniques

Chair: Ram Krishnamurthy, Intel Corporation

MA3.1 Delay dependent power optimisation of combinational circuits using And-Inverter graphs
Rashmi Mehrotra, Tom English, Emanuel Popovici, Micheal Schellekens
University College Cork, Ireland

MA3.2 Simultaneous Co-Design of Distributed On-Chip Power Supplies and Decoupling Capacitors,
Selcuk Kose and Eby G. Friedman
University of Rochester

MA3.3 Optimization and Predication of Leakage Current Characteristics in Wide Domino OR Gates Under PVT Variation,
Na Gong and Ramalingam Sridhar
University at Buffalo, SUNY

MA3.4 A Run-time Distributed Cooperative Approach to Optimize Power Consumption in MPSoCs,
Imen Mansouri¹, Fabien Clermidy¹, Pascal Benoit¹, Lionel Torres¹
¹CEA-leti Grenoble France, ²UMII Lirmm Montpellier France

Session MB3 – Analog1

Chair: Suhwan Kim, Seoul National University, Korea

MB3.1 Highly Programmable Switched-Capacitor Filters Using Biquads with Nonuniform Internal Clocks
Oliver Gysel¹, Paul Hurst², Stephen Lewis²
¹Analog Devices, ²UC Davis

MB3.2 A Digitally Self-Calibrated Low-Noise 7-bit Folding A/D Converter
Min Ah Kwon, Dahnsoom Kim, Daeyun Kim, Junho Moon, Minkyu Song
Dongguk University
MB3.3 A High-Resolution and Fast-Conversion Readout Circuit for Differential Capacitive Sensors
Jong-Kwan Woo, Hyunjoong Lee, Sangho Ahn, Suhwan Kim
Seoul National University

MB3.4 Jitter Transfer Function Model and VLSI Jitter Filter Circuits
Hongjiang Song1, Jianan Song2, Aritra Dey1, Yan Song1
1Intel Corporation, 2Arizona State University

Session MT1- Embedded Tutorial
Chair: Sao-Jie Chen, National Taiwan University

Embedded Tutorial: A Holistic View on Low Power Design
Dr. Thomas Buechner, IBM

Session MA4 - Low Power SoC Circuits
Chair: Kaijian Shi, Synopsys

MA4.1 A 10b 200MHz Pipeline ADC with Minimal Feedback Penalty and 0.35pJ/Conversion-Step
Gang Chen, Yifei Luo, Jiayin Tian, Kuan Zhou
University of New Hampshire

MA4.2 High Speed Recursion-Free CORDIC Architecture
Shakeel Abdulla1, Haewoon Nam2, Earl Swartzlander, Jr1, Jacob Abraham1
1UT, 2Motorola Inc

MA4.3 A 1 ppm/°C bandgap voltage reference with new second-order Taylor curvature compensation
Ralph Oberhuber, Rahul Prakash, Vadim Ivanov
Texas Instruments Inc.

Session MB4 – Analog 2
Chair: Suhwan Kim, Intel Corporation

MB4.1 Frequency-independent Fast-lock Register-controlled DLL with Wide-range Duty Cycle Adjuster
Dongsuk Shin, Joo-Hwan Cho, Young-Jung Choi, Byoung-Tae Chung
Hynix Semiconductor Inc.

MB4.2 A 1.7Gbps DLL-based Clock Data Recovery in 0.35μm CMOS
Sang-Ho Kim1, Hyung-Min Park1, Tae-Ho Kim1, Jin-Ku Kang1, Jin-Ho Kim3, Jae-Youl Lee2, Yoon-Kyung Choi2, Myunghee Lee2
1Dept. of Electronics Engineering, Inha University, 2Samsung Electronics Corporation

MB4.3 A CMOS 5.4/3.24Gbps Dual-rate Clock and Data Recovery Design for DisplayPort v1.2
Tae-Ho Kim1, Dong-Kyun Kim1, Jae-Wook Yoo1, Jin-Ku Kang1
1Dept. of Electronics Engineering, Inha University, 2Siliconworks CorporationRalph Oberhuber, Rahul Prakash, Vadim Ivanov
Texas Instruments Inc.
Session MT2- Embedded Tutorial
Chair: Sao-Jie Chen, National Taiwan University

Embedded Tutorial: Low-power SOC implementation: What you need to know
Kaijian Shi, Synopsys Professional Services

Session TA1 - Multimedia Processing
Chair: Emma E. Regentova, UNLV

TA1.1 System-Level Exploration of Mesh-based NoC Architectures for Multimedia Applications
Ning Ma, Zhonghai Lu, Zhibo Pang, Lirong Zheng
Royal Institute of Technology (KTH)

TA1.2 A 40 Mbps H.264/AVC CAVLC Decoder using a 64-bit Multiple-Issue Video Parsing Coprocessor
Soonwoo Choi, Jason J.K. Park, Moonmo Koo, Daewoong Kim, Soo-Ik Chae
Seoul National University

TA1.3 A High-Efficiency Reconfigurable 2-D Discrete Wavelet Transform Engine for JPEG2000
Implementation on Next Generation of Digital Cameras
Xin Zhao, Ying Yi, Ahmet Erdogan, Tughrul Arslan
University of Edinburgh

TA1.4 Orthogonal Shift Level Comparison Reuse for Structuring Element Shape Independent VLSI-
Architectures of 2D Morphological Operations
Markus Holzer¹, Ruben Bartholomé², Thomas Greiner¹, Wolfgang Rosenstiel²
¹MERSES – Center for Applied Research, Pforzheim University, Pforzheim, Germany,
²Wilhelm-Schickard-Institute for Computer Science, Eberhard Karls University, Tuebingen, Germany

Session TB1 - System Level Design Methodologies
Chair: Yong-Bin Kim, Northeastern University

TB1.1 Case Study: Runtime Reduction of a Buffer Insertion Algorithm Using GPU Parallel Programming
WON HA CHOI and XUN LIU
North Carolina State University

TB1.2 Unleash the Parallelism of 3DIC Partitioning On GPGPU
Hsien-Kai Kuo, Bo-Cheng Charles Lai, Jing-Yang Jou
Department of Electronics Engineering, National Chiao Tung University

TB1.3 Routability-Driven RDL Routing with Pin Reassignment
Jin-Tai Yan, Ke-Chyuan Chen, Zhi-Wei Chen
Chung-Hua University

TB1.4 Statistical Electro-Thermal Analysis with High Compatibility of Leakage Power Models
Huai-Chung Chang, Pei-Yu Huang, Ting-Jung Li, Yu-Min Lee
National Chiao Tung University
Session TA2 - Design
Chair: Sakir Sezer, Queen's University Belfast

TA2.1 Variation-tolerant Design of D-FlipFlops
Hiroaki Sunagawa1 and Hidetoshi Onodera2
1Kyoto University, 2Kyoto University/JST CREST

TA2.2 High Speed and Low Power Transceiver Design with CNFET and CNT Bundle Interconnect
Young Bok Kim and Yong-Bin Kim
Northeastern University

TA2.3 NBTI-Aware Statistical Timing Analysis Framework
Sangwoo Han and Juho Kim
Computer Science and Engineering, Sogang University

TA2.4 Implementation of a Hardware-Efficient EEG Processor for Brain Monitoring System
Chiu-Kuo Chen, Ericson Chua, Shao-Yen Tseng, Chih-Chung Fu, Wai-Chi Fang
NCTU

TA2.5 Design and Analysis of an Advanced Static Blocked Multithreading Architecture
Ye Liu, Sakir Sezer, John Mccanny
Queen's University Belfast

Session TB2 - System Level Design Methodologies
Chair: Yong-Bin Kim, Northeastern University

TB2.1 A Folding Strategy for SAT Solvers based on Shannon’s Expansion Theorem
Siwat Saibua1, Po-Yu Kuo1, Dian Zhou1, Ming-e Jing2
1Electrical Engineering at University of Texas at Dallas, 2Fudan University

TB2.2 TERA: A FPGA-Based Trace-Driven Emulation Framework for Designing On-Chip Communication Architectures
Dan Liu, Yi Feng, Jingjin Zhou, Dong Tong, Xu Cheng, Keyi Wang
Microprocessor Research Center, Peking University, Beijing, China

TB2.3 Expandable MDC-Based FFT Architecture and Its Generator for High-Performance Applications
Bu-Ching Lin, Yu-Hsiang Wang, Juinn-Dar Huang, Jing-Yang Jou
Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University

TB2.4 A SystemC AMS Extension for the Simulation of Non-linear Circuits
Thomas Uhle and Karsten Einwich
Fraunhofer IIS / EAS

TB2.5 An Automated Control Code Generation Approach for the SegBus Platform
Moazzam Fareed Niazi1, Tiberiu Seceleanu2, Cristina Seceleanu2, Hannu Tenhunan1
1University of Turku, Finland, 2ABB Corporate Research, Sweden
Session TA3 - Low Power Design
Chair: Kaijian Shi, Synopsys

TA3.1 Power Noise Suppression Technique using Active Decoupling Capacitor for TSV 3D Integration
Tien-Hung Lin, Po-Tsang Huang, Wei Hwang
Institute of Electronics, National Chiao Tung University

TA3.2 Estimation of Maximum Application-level Power Supply Noise
Tung-Yeh Wu, Sriram Sambamurthy, Jacob Abraham
The University of Texas at Austin

TA3.3 Simultaneous Voltage Island Generation and Floorplanning
Houng-Yi Li, Iris Hui-Ru Jiang, Hung-Ming Chen
NCTU

TA3.4 Footer Voltage Feedforward Domino Technique for Wide Fan-in Dynamic Logic
Rahul Singh, Ah Reum Kim, Suhwan Kim
Seoul National Univ., Seoul, South Korea.

TA3.5 Thermal Estimation for accurate Estimation of Impact of BTI Aging Effects on Nano-scale SRAM Circuits
Ankitchandra Shah and Hamid Mahmoodi
San Francisco State University

TA3.6 Enhanced IEEE 1500 Test Wrapper for Testing Small RAMs in SOCs
Yu-Jen Huang, Yun-Chao You, Jin-Fu Li
Department of Electrical Engineering, National Central University, Taiwan

Session TB3 - Reconfigurable Systems
Chair: Juergen Becker, Karlsruhe Institute of Technology

TB3.1 Estimation of characteristic variation of photodiodes and its compensation method in an optically reconfigurable gate array
Yuji Aoyama and Minoru Watanabe
Shizuoka University

TB3.2 A Routing Architecture Exploration for Coarse-Grained Reconfigurable Architecture with Automated SEU-Tolerance Evaluation
Takashi Imagawa, Masayuki Hiromoto, Hirohiki Ochi, Takashi Sato
Graduate School of Informatics, Kyoto University

TB3.3 Binary Object Recognition System on FPGA with bSOM
Kofi Appiah, Andrew Hunter, Patrick Dickinson, Hongying Meng
University of Lincoln

TB3.4 Resource Constrained Mapping of Data Flow Graphs onto Coarse-Grained Reconfigurable Array
Naifeng Jing, Weifeng He, Zhigang Mao
Shanghai Jiao Tong University

TB3.5 Design of a Link-Controller architecture for Multiple Serial Link Protocols
Lei Wang¹, Vishal Nawathe¹, Pawankumar Hegde¹, Roman Staszewski², Vojin Oklobdzija¹
¹The University of Texas -Dallas, ²Texas Instruments, Dallas
TB3.6 High-Performance Random Data Lookup for Network Processing

Xin Yang, Sakir Sezer, John McCanny, Dwayne Burns
QUB
Poster Session
Chair: Ramalingam Sridhar, University at Buffalo
Co-Chair: Norbert Schuhmann, Fraunhofer IIS

Analog and Mixed Signals

P1 A 65nm CMOS Ultra Low Power and Low Noise 131MΩ Front-End Transimpedance Amplifier
Jiapeng Hu, Yong-Bin Kim, Joseph Ayers
Northeastern University

P2 A CMOS Low-Power Low-Offset and High-Speed Fully Dynamic Latched Comparator
Heung Jun Jeon and Yong-Bin Kim
Northeastern University

P3 A CMOS 6 bit 250MS/s A/D Converter with input voltage range detectors
Kwang Yoon¹ and Won Kim²
¹Inha University, ²LG Electronics

P4 Clock buffer with duty cycle corrector
Shao-Ku Kao and Yong-De You
Chang Gung University, Tao-Yuan, Taiwan, R.O.C.

P5 A 70dB SNDR 10-MHz BW Hybrid Delta-Sigma/Pipeline ADC in 0.18-µm CMOS
Xiong Liu and Alan Willson
UCLA

P6 8Gbps High-Speed I/O Transmitter with Scalable Speed, Swing and Equalization Levels
Mohammed Younus and Hongjiang Song
Intel Corporation

Reconfigurable and Programmable Circuits and Systems, FPGAs

P7 Run-time configuration prefetching to reduce the overhead of dynamically reconfiguration
Binbin Wu¹, Like Yan¹, Shaobin Zhang², Tianzhou Chen³
¹Zhejiang University, ²Zhejiang University of Technology

P8 A Multi-channel Frequency Detection and Monitoring System
Mohammed Abdallah and Omar Elkeelany
TTU

Embedded Systems, Multi Core, and Embedded Memory

P9 Process Technology and Design Parameter Impact on SRAM Bit-Cell Sleep Effectiveness
Gururaj Shamanna, Bhunesh Kshatri, Gaurav Raja, Y.S. Tew, P Marfatia, Y. Raghavendra, V. Naik
Intel Corporation

P10 Interconnect System Compression Analysis for Multi-core Architectures
Jiangjiang Liu¹, Jianyong Zhang¹, Nihar Mahapatra²
¹Lamar University, ²Michigan State University
Low Power

P11 Fan-in Sensitive Low Power Dynamic Circuits Performance Statistical Characterization
Jinhui Wang¹, Na Gong², Wuchen Wu¹, Ligang Hou¹
¹Beijing University of Technology, ²University at Buffalo

P12 Energy Efficient Computational Blocks with Self-Adaptive Single-Ended Body Bias technique
SenthilKumar Jayapal¹, Jan Stuijt¹, Jos Huisken¹, Yiannos Manoli²
¹Holst Centre / The Netherlands, ²IMTEK, Chair of microelectronics, Germany

P13 Power Minimization Methodology for VCTL Topologies
Osman Kubilay Ekekon¹, Samed Maltabas¹, Martin Margala¹, Ugur Cilingiroglu²
¹University of Massachusetts Lowell, ²Yeditepe University

P14 Hybrid MOSFET/CNFET Based Power Gating Structure
Kyung Ki Kim¹, Haiqing Nan², Ken Choi²
¹Daegu University, South Korea, ²Illinois Institute of Technology

Verification

P15 Comparison of Performance Parameters of SRAM Designs in 16nm CMOS and CNIFET Technologies
Anuj Pushkarna, Sajna Raghavan, Hamid Mahmoodi
San Francisco State University

P16 A BDD-based Approach to Design Power-aware On-line Detectors for Digital Circuits
Gopal Paul¹, Santosh Biswas², Chittaranjan Mandal¹, Bhargab B. Bhattacharya¹
IIT- Kharagpur; ¹IIT-Kharagpur, ²ISI-Kolkata

P17 An Efficient VLSI Architecture for Extended Variable Block Sizes Motion Estimation
Weifeng He, Weiwei Chen, Zhigang Mao
Shanghai Jiaotong University

Multimedia Processing

P18 A Multimedia Content Generation Methodology in Support to SOC Decoder Development and Validation
Tuyet-Trang Lam and Ricardo Citro
Intel Corporation

P19 Effect of a Polywell geometry on a CMOS Photodiode Array
Paul Jansz, Steven Hinekley, Graham Wild
Edith Cowan University

Network on Chip and Interconnect

P20 MMPI: A Flexible and Efficient Multiprocessor Message Passing Interface for NoC-Based MPSoC
Fangfa Fu, Siyue Sun, Xin'an Hu, Junjie Song, Jinxiang Wang, Minyan Yu
Micro-electronic Center Haerbin Intitute of Technology
P21 A Method for Efficient NoC Test Scheduling Using Deterministic Routing
Rana Farah1 and Haidar Harmanani2
1Ecole Polytechnique de Montréal, 2Lebanese American University

P22 Flow Oriented Routing for NOCS
Evelton Carara and Fernando Moraes
PUCRS

P23 A Globally-Interconnected Modular CMP System with Communication on the Fly
Marek Tudruj1 and Lukasz Masko2
1PJWSTK/IPIPAN, 2IPIPAN

P24 Energy and Delay-Aware Mapping for Real-Time Digital Processing System on Network on Chip platforms
Yiou Chen, Jianhao Hu, Gengsheng Chen, Xiang Ling
National Key Lab of Science and Technology on Communications, University of Electronic Science and Technology of China

P25 Thermal Modelling of 3D Multicore Systems in a Flip-Chip Package
Kameswar Rao Vaddina1, Tamoghna Mitra2, Pasi Liljeberg3, Juha Plosila4
1PhD Researcher, 2Researcher, 3Post Doc. researcher, 4Adjunct. Professor

P26 Efficient Multicasting Scheme for Irregular Mesh-Based NoCs
Xiaohang Wang1, Mei Yang1, Yingtao Jiang1, Peng Liu2
1UNLV, 2Zhejiang University

System Level Design Methodology

P27 Toward Formal System-Level Verification of Security Requirements During Hardware/Software Codesign
Johannes Loinig1, Christian Steger1, Reinhold Weiss1, Ernst Haselsteiner2
1Graz University of Technology, 2NXP Semiconductors Austria GmbH

P28 Thermal Via Planning for Temperature Reduction in 3D ICs
Jin-Tai Yan, Yu-Cheng Chang, Zhi-Wei Chen
Chung-Hua University

P29 A design procedure of predictive RF MOSFET model for compatibility with ITRS
SinNyoung Kim, Akira Tsuchiya, Hidetoshi Onodera
Kyoto University

Panel Discussion: SOC Efficiency - Will Software or Hardware Dominate?
Moderator: Andrew Marshall, Texas Instruments

Section WPL – Plenary Session
Chair: Thomas Büchner, IBM
Co-Chair: Andrew Marshall, Texas Instruments

Plenary Presentation: Patent Litigation Aspects in SoC Design
Dr. Jo Dale Carothers, Covington & Burling LLP
Session WA1 - Embedded Memory and Systems 1
Chair: Venkatesan Muthukumar, UNLV

WA1.1 A Differential Read Subthreshold SRAM Bitcell with Self-adaptive Leakage Cut Off Scheme
Bai Na¹, Xuan Chen², Yang Ju¹, Shi Longxin¹
¹Southeast University, ²University of Posts and Telecommunications

WA1.2 Low Power Nonvolatile SRAM Circuit with Integrated Low Voltage Nanocrystal PMOS Flash
Shantam Rajwade¹, Wing-kei Yu¹, Sarah Xu¹, Tuo-Hung Hou¹, Edward Suh¹, Edwin Kan¹
¹Cornell University, ²National Chiao Tung University

WA1.3 Handling Shared Variable Synchronization in Multi-core Network-on-Chip with Distributed Memory
Xiaowen Chen¹, Zhonghai Lu², Axel Jantsch¹, Shuming Chen¹
¹National University of Defense Technology, ²KTH - Royal Institute of Technology

Session WT1 - Embedded Tutorial
Chair: Sao-Jie Chen, National Taiwan University

Embedded Tutorial: Quality-driven SoC Architecture Synthesis for Embedded Applications
Dr. Lech Jóźwiak, Eindhoven University of Technology

Session WA2 - Network on Chip 1
Chair: Venkatesan Muthukumar, UNLV

WA2.1 DyML: Dynamic Multi-Level Flow Control for Networks on Chip
Wen-Chung Tsai¹, Ying-Cherng Lan¹, Sao-Jie Chen², Yu-Hen Hu³
¹Graduate Institute of Electronics Engineering, National Taiwan University, ²Department of Electrical Engineering and Graduate Institute of Electronics Engineering, National Taiwan University, ³Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison

WA2.2 A Prediction-Based, Data Migration Algorithm for Hybrid Architecture NoC Systems
Jonathan Nafziger, Annie Avakian, Ranga Vemuri
University of Cincinnati

WA2.3 FoN: Fault-on-Neighbor Aware Routing Algorithm for Networks-on-Chip
Chaochao Feng¹, Zhonghai Lu¹, Axel Jantsch¹, Jinwen Li², Minxuan Zhang²
¹Royal Institute of Technology, ²National University of Defense Technology

WA2.4 Simulation Based Study of On-chip Antennas for a Reconfigurable Hybrid 3D Wireless NoC
Ankit More and Baris Taskin
Drexel University

Session WB2 - Communication Circuits and Systems
Chair: Hongjiang Song, Intel Corporation

WB2.1 A Novel Architectural Approach for Control Architectures in RF Transceivers
Siegfried Brandstaetter¹, Burkhard Neurauter¹, Mario Huemer²
¹DICE GmbH & Co KG, ²Klagenfurt University
WB2.2 A Mixed-Signal Timing Circuit in 90nm CMOS for Energy Detection IR-UWB Receivers
Qin Zhou, Jia Mao, Zhuo Zou, Fredrik Jonsson, Li-Rong Zheng
KTH-Royal Institute of Technology

WB2.3 A Novel Architecture for Discrete Chaotic Signal Generators
Qihang SHI, Xinshi XU, Jingbo GUO
Tsinghua University

Session WA3 - Network on Chip 2
Chair: Emma E. Regentova, UNLV

WA3.1 Run-time Communication Bypassing for Energy-Efficient, Low-Latency Per-Core DVFS on Network-on-Chip
Liang Guang, Ethiopia Nigussie, Hannu Tenhunen
University of Turku, Finland

WA3.2 Comparative Performance Evaluation of Wireless of Wireless and Optical NOC Architectures
Sujay Deb, Kevin Chang, Amlan Ganguly, Partha Pande
Washington State University

WA3.3 Hermes-AA A 65nm Asynchronous NoC Router with Adaptive Routing
Julian Pontes, Matheus Moreira, Fernando Moraes, Ney Calazans
PUCRS

WA3.4 Power Analysis for Asynchronous CLICHÉ Network-on-Chip
Mohamed Abd El ghany1, Gursharan Reehal2, Darek Korzec3, Mohammed Ismail4
1Electronics Engineering Dept., German University in Cairo, Cairo, Egypt, 2Electrical and Computer Engineering Dept., The Ohio State University, Columbus, USA, 3Electrical and Computer Engineering Dept., The Ohio State University, Columbus, USA. The RaMSiS Group, KTH, Sweden

Session WB3 - Embedded Memory and Systems 2
Chair: Venkatesan Muthukumar, UNLV

WB3.1 Way-Load Balancing Scheme for Mobile Cache LRU Replacement
Satish Raghunath, Naveen Davanam, Lakshmi Deepika Bobbala, Byeong Kil Lee
The University of Texas at San Antonio

WB3.2 Exploiting Large On-Chip Memory Space Through Data Recomputation
Hakduran Koc1, Mahmut Kandemir2, Ehat Ercanli3
1University of Houston - Claer Lake, 2The Pensylvania State University, 3Syracuse University

WB3.3 A Dependable SRAM with Enhanced Read-/Write-Margins by Fine-Grained Assist Bias Control for Low-Voltage Operation
Koji Nii, Makoto Yabuuchi, Hidehiro Fujiwara, Hirofumi Nakano, Kazuya Ishihara, Hiroyuki Kawai, Kazutami Arimoto
Renesas Electronics Corporation
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdallah, Mohammed</td>
<td>309</td>
</tr>
<tr>
<td>Abdulla, Shakeel</td>
<td>65</td>
</tr>
<tr>
<td>Abraham, Jacob</td>
<td>65</td>
</tr>
<tr>
<td>Ahmed, Hazem</td>
<td>473</td>
</tr>
<tr>
<td>Ahn, Sungho</td>
<td>44</td>
</tr>
<tr>
<td>Aoyama, Yuji</td>
<td>243</td>
</tr>
<tr>
<td>Appiah, Kofi</td>
<td>254</td>
</tr>
<tr>
<td>Arimoto, Kazutami</td>
<td>519</td>
</tr>
<tr>
<td>Arslan, Tughrul</td>
<td>109</td>
</tr>
<tr>
<td>Avakian, Annie</td>
<td>435</td>
</tr>
<tr>
<td>Ayers, Joseph</td>
<td>281</td>
</tr>
<tr>
<td>Bartholomâ, Ruben</td>
<td>113</td>
</tr>
<tr>
<td>Benoit, Pascal</td>
<td>25</td>
</tr>
<tr>
<td>Bhattacharya, Bhargab B.</td>
<td>343</td>
</tr>
<tr>
<td>Biswas, Santosh</td>
<td>343</td>
</tr>
<tr>
<td>Brandstaetter, Siegfried</td>
<td>407</td>
</tr>
<tr>
<td>Burns, Dwayne</td>
<td>272</td>
</tr>
<tr>
<td>Calazans, Ney</td>
<td>493</td>
</tr>
<tr>
<td>Carara, Everton</td>
<td>367</td>
</tr>
<tr>
<td>Chae, Soo-Ik</td>
<td>105</td>
</tr>
<tr>
<td>Chang, Huai-Chung</td>
<td>139</td>
</tr>
<tr>
<td>Chang, Kevin</td>
<td>487</td>
</tr>
<tr>
<td>Chang, Yu-Cheng</td>
<td>392</td>
</tr>
<tr>
<td>Chen, Chiu-Kuo</td>
<td>164</td>
</tr>
<tr>
<td>Chen, Gang</td>
<td>59</td>
</tr>
<tr>
<td>Chen, Xiaowen</td>
<td>467</td>
</tr>
<tr>
<td>Chen, Zhi-Wei</td>
<td>392</td>
</tr>
<tr>
<td>Chen, Gengsheng</td>
<td>375</td>
</tr>
<tr>
<td>Chen, Hung-Ming</td>
<td>219</td>
</tr>
<tr>
<td>Chen, Ke-Chyuan</td>
<td>133</td>
</tr>
<tr>
<td>Chen, Sao-Jie</td>
<td>429</td>
</tr>
<tr>
<td>Chen, Shuming</td>
<td>467</td>
</tr>
<tr>
<td>Chen, Tianzhou</td>
<td>305</td>
</tr>
<tr>
<td>Chen, Weiwei</td>
<td>347</td>
</tr>
<tr>
<td>Chen, You</td>
<td>375</td>
</tr>
<tr>
<td>Chen, Zhi-Wei</td>
<td>133</td>
</tr>
<tr>
<td>Cheng, Xu</td>
<td>182</td>
</tr>
<tr>
<td>Choi, Ken</td>
<td>334</td>
</tr>
<tr>
<td>Choi, Soonwoo</td>
<td>105</td>
</tr>
<tr>
<td>CHOI, WON HA</td>
<td>121</td>
</tr>
<tr>
<td>Choi, Yoon-Kyung</td>
<td>84</td>
</tr>
<tr>
<td>Chua, Ericson</td>
<td>164</td>
</tr>
<tr>
<td>Cilingiroglu, Ugur</td>
<td>330</td>
</tr>
<tr>
<td>Citro, Ricardo</td>
<td>351</td>
</tr>
<tr>
<td>Clermidy, Fabien</td>
<td>25</td>
</tr>
<tr>
<td>Deb, Sujay</td>
<td>487</td>
</tr>
<tr>
<td>Dey, Aritra</td>
<td>48</td>
</tr>
<tr>
<td>Dickinson, Patrick</td>
<td>254</td>
</tr>
<tr>
<td>Ehat Ercanli, Ehat</td>
<td>513</td>
</tr>
<tr>
<td>Einwich, Karsten</td>
<td>193</td>
</tr>
<tr>
<td>Ekekon, Osman Kubilay</td>
<td>330</td>
</tr>
<tr>
<td>Elkeelany, Omar</td>
<td>309</td>
</tr>
<tr>
<td>El-shabrawy, Tallal</td>
<td>473</td>
</tr>
<tr>
<td>English, Tom</td>
<td>9</td>
</tr>
<tr>
<td>Erdogan, Ahmet</td>
<td>109</td>
</tr>
<tr>
<td>Fahmy, Hossam A. H.</td>
<td>473</td>
</tr>
<tr>
<td>Fang, Wai-Chi</td>
<td>164</td>
</tr>
<tr>
<td>Farah, Rana</td>
<td>363</td>
</tr>
<tr>
<td>Feng, Chaochao</td>
<td>441</td>
</tr>
<tr>
<td>Feng, Yi</td>
<td>182</td>
</tr>
<tr>
<td>Friedman, Eby G.</td>
<td>15</td>
</tr>
<tr>
<td>Fu, Chih-Chung</td>
<td>164</td>
</tr>
<tr>
<td>Fu, Fangfa</td>
<td>359</td>
</tr>
<tr>
<td>Fujiwara, Hidehiro</td>
<td>519</td>
</tr>
<tr>
<td>Ganguly, Amlan</td>
<td>487</td>
</tr>
<tr>
<td>ghany, Mohamed Abd El</td>
<td>499</td>
</tr>
<tr>
<td>Gong, Na</td>
<td>19, 321</td>
</tr>
<tr>
<td>Greiner, Thomas</td>
<td>113</td>
</tr>
<tr>
<td>Guang, Liang</td>
<td>481</td>
</tr>
<tr>
<td>GUO, Jingbo</td>
<td>417</td>
</tr>
<tr>
<td>Gysel, Oliver</td>
<td>33</td>
</tr>
<tr>
<td>Han, Sangwoo</td>
<td>158</td>
</tr>
<tr>
<td>Harmanani, Haidar</td>
<td>363</td>
</tr>
<tr>
<td>Haselsteiner, Ernst</td>
<td>388</td>
</tr>
<tr>
<td>He, Weifeng</td>
<td>260, 347</td>
</tr>
<tr>
<td>Hegde, Pawankumar</td>
<td>266</td>
</tr>
<tr>
<td>Hinckley, Steven</td>
<td>355</td>
</tr>
<tr>
<td>Hiromoto, Masayuki</td>
<td>248</td>
</tr>
<tr>
<td>Holzer, Markus</td>
<td>113</td>
</tr>
<tr>
<td>Hou, Ligang</td>
<td>321</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Hou, Tuo-Hung</td>
<td>461</td>
</tr>
<tr>
<td>Hu, Jiaping</td>
<td>281</td>
</tr>
<tr>
<td>Hu, Jianhao</td>
<td>375</td>
</tr>
<tr>
<td>Hu, Xin’an</td>
<td>359</td>
</tr>
<tr>
<td>Hu, Yu-Hen</td>
<td>429</td>
</tr>
<tr>
<td>Huang, Po-Tsang</td>
<td>209</td>
</tr>
<tr>
<td>Huang, Yu-Jen</td>
<td>236</td>
</tr>
<tr>
<td>Huang, Juinn-Dar</td>
<td>188</td>
</tr>
<tr>
<td>Huang, Pei-Yu</td>
<td>139</td>
</tr>
<tr>
<td>Huemer, Mario</td>
<td>407</td>
</tr>
<tr>
<td>Huisken, Jos</td>
<td>326</td>
</tr>
<tr>
<td>Hunter, Andrew</td>
<td>254</td>
</tr>
<tr>
<td>Hurst, Paul</td>
<td>33</td>
</tr>
<tr>
<td>Hwang, Wei</td>
<td>209</td>
</tr>
<tr>
<td>Imagawa, Takashi</td>
<td>248</td>
</tr>
<tr>
<td>Ismail, Mohammed</td>
<td>499</td>
</tr>
<tr>
<td>Ivanov, Vadim</td>
<td>71</td>
</tr>
<tr>
<td>Jacob Abraham, Sriram</td>
<td>213</td>
</tr>
<tr>
<td>Jansz, Paul</td>
<td>355</td>
</tr>
<tr>
<td>Jantsch, Axel</td>
<td>441</td>
</tr>
<tr>
<td>Jayapal, SenthilKumar</td>
<td>326</td>
</tr>
<tr>
<td>Jeon, Heung Jun</td>
<td>285</td>
</tr>
<tr>
<td>Jiang, Iris Hui-Ru</td>
<td>219</td>
</tr>
<tr>
<td>Jiang, Yingtao</td>
<td>384</td>
</tr>
<tr>
<td>Jing, Naifeng</td>
<td>260</td>
</tr>
<tr>
<td>Jonsson, Fredrik</td>
<td>413</td>
</tr>
<tr>
<td>Jou, Jing-Yang</td>
<td>127</td>
</tr>
<tr>
<td>Kan, Edwin</td>
<td>461</td>
</tr>
<tr>
<td>Kandemir, Mahmut</td>
<td>513</td>
</tr>
<tr>
<td>Kang, Jin-Ku</td>
<td>84, 88</td>
</tr>
<tr>
<td>Kao, Shao-Ku</td>
<td>293</td>
</tr>
<tr>
<td>Kawai, Hiroyuki</td>
<td>519</td>
</tr>
<tr>
<td>Kim, Juho</td>
<td>158</td>
</tr>
<tr>
<td>Kim, Kyung Ki</td>
<td>334</td>
</tr>
<tr>
<td>Kim, Sang-Ho</td>
<td>84</td>
</tr>
<tr>
<td>Kim, SinNyoung</td>
<td>396</td>
</tr>
<tr>
<td>Kim, Tae-Ho</td>
<td>88</td>
</tr>
<tr>
<td>Kim, Young Bok</td>
<td>152</td>
</tr>
<tr>
<td>Kim, Ah Reum</td>
<td>224</td>
</tr>
<tr>
<td>Kim, Daewoong</td>
<td>105</td>
</tr>
<tr>
<td>Kim, Daeyun</td>
<td>39</td>
</tr>
<tr>
<td>Kim, Dahsoum</td>
<td>39</td>
</tr>
<tr>
<td>Kim, Dong-Kyun</td>
<td>88</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Manoli, Yiannos</td>
<td>326</td>
</tr>
<tr>
<td>Mansouri, Imen</td>
<td>25</td>
</tr>
<tr>
<td>Mao, Jia</td>
<td>413</td>
</tr>
<tr>
<td>Mao, Zhigang</td>
<td>260, 347</td>
</tr>
<tr>
<td>Margala, Martin</td>
<td>330</td>
</tr>
<tr>
<td>Masko, Lukasz</td>
<td>371</td>
</tr>
<tr>
<td>Mccanny, John</td>
<td>169, 272</td>
</tr>
<tr>
<td>Mehrotra, Rashmi</td>
<td>9</td>
</tr>
<tr>
<td>Meng, Hongying</td>
<td>254</td>
</tr>
<tr>
<td>Mitra, Tamoghna</td>
<td>379</td>
</tr>
<tr>
<td>Moon, Junho</td>
<td>39</td>
</tr>
<tr>
<td>Moraes, Fernando</td>
<td>367, 493</td>
</tr>
<tr>
<td>More, Ankit</td>
<td>447</td>
</tr>
<tr>
<td>Moreira, Matheus</td>
<td>493</td>
</tr>
<tr>
<td>Na, Bai</td>
<td>455</td>
</tr>
<tr>
<td>Nafziger, Jonathan</td>
<td>435</td>
</tr>
<tr>
<td>Nakano, Hirofumi</td>
<td>519</td>
</tr>
<tr>
<td>Nam, Haewoon</td>
<td>65</td>
</tr>
<tr>
<td>Nan, Haqing</td>
<td>334</td>
</tr>
<tr>
<td>Nawathe, Vishal</td>
<td>266</td>
</tr>
<tr>
<td>Neurauter, Burkhard</td>
<td>407</td>
</tr>
<tr>
<td>Niazi, Moazzam Fareed</td>
<td>199</td>
</tr>
<tr>
<td>Nigussie, Ethiopia</td>
<td>481</td>
</tr>
<tr>
<td>Nii, Koji</td>
<td>519</td>
</tr>
<tr>
<td>Oberhuber, Ralph</td>
<td>71</td>
</tr>
<tr>
<td>Ochi, Hiroyuki</td>
<td>248</td>
</tr>
<tr>
<td>Oklobetzija, Vojin</td>
<td>266</td>
</tr>
<tr>
<td>Onodera, Hidetoshi</td>
<td>147, 396</td>
</tr>
<tr>
<td>Pande, Partha</td>
<td>487</td>
</tr>
<tr>
<td>Pang, Zhibo</td>
<td>99</td>
</tr>
<tr>
<td>Park, Hyung-Min</td>
<td>84</td>
</tr>
<tr>
<td>Park, Jason J.K.</td>
<td>105</td>
</tr>
<tr>
<td>Paul, Gopal</td>
<td>343</td>
</tr>
<tr>
<td>Plosila, Juha</td>
<td>379</td>
</tr>
<tr>
<td>Pontes, Julian</td>
<td>493</td>
</tr>
<tr>
<td>Popovici, Emanuel</td>
<td>9</td>
</tr>
<tr>
<td>Prakash, Rahul</td>
<td>71</td>
</tr>
<tr>
<td>Pushkarna, Anuj</td>
<td>339</td>
</tr>
<tr>
<td>Raghavan, Sajna</td>
<td>339</td>
</tr>
<tr>
<td>Raja, Gaurav</td>
<td>313</td>
</tr>
<tr>
<td>Rajwade, Shantanu</td>
<td>461</td>
</tr>
<tr>
<td>Reehal, Gursharan</td>
<td>499</td>
</tr>
<tr>
<td>Rosenstiel, Wolfgang</td>
<td>113</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>MPL: Plenary Session</td>
<td></td>
</tr>
<tr>
<td>MA3: SoC Power Optimization Techniques</td>
<td></td>
</tr>
<tr>
<td>MB3 – Analog 1</td>
<td></td>
</tr>
<tr>
<td>MT1- Embedded Tutorial</td>
<td></td>
</tr>
<tr>
<td>MA4 - Low Power SoC Circuits</td>
<td></td>
</tr>
<tr>
<td>MB4 – Analog 2</td>
<td></td>
</tr>
<tr>
<td>MT2- Embedded Tutorial</td>
<td></td>
</tr>
<tr>
<td>TA1 - Multimedia Processing</td>
<td></td>
</tr>
<tr>
<td>TB1 - System Level Design Methodologies</td>
<td></td>
</tr>
<tr>
<td>TA2 - Design</td>
<td></td>
</tr>
<tr>
<td>TB2 - System Level Design Methodologies</td>
<td></td>
</tr>
<tr>
<td>TA3 - Low Power Design</td>
<td></td>
</tr>
<tr>
<td>TB3 - Reconfigurable Systems</td>
<td></td>
</tr>
<tr>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>WPL: Plenary Session</td>
<td></td>
</tr>
<tr>
<td>WA1 - Embedded Memory and Systems 1</td>
<td></td>
</tr>
<tr>
<td>WT1 - Embedded Tutorial</td>
<td></td>
</tr>
<tr>
<td>WA2 - Network on Chip 1</td>
<td></td>
</tr>
<tr>
<td>WB2 - Communication Circuits and Systems</td>
<td></td>
</tr>
<tr>
<td>WA3 - Network on Chip 2</td>
<td></td>
</tr>
<tr>
<td>WB3 - Embedded Memory and Systems 2</td>
<td></td>
</tr>
</tbody>
</table>
MPL SESSION

Keynote/Plenary Session

General Chair: Thomas Büchner, IBM
Co-Chair: Andrew Marshall, Texas Instruments
Keynote Speaker

Alberto Sangiovanni-Vincentelli
Professor, University of California at Berkeley, and
Chief Technology Advisor, Cadence Design Systems

“SoC Design as an Example of Component-Based Design of Distributed Systems”

Alberto Sangiovanni Vincentelli holds the Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences at the University of California at Berkeley. He has been on the Faculty since 1976. He obtained an electrical engineering and computer science degree (“Dottore in Ingegneria”) summa cum laude from the Politecnico di Milano, Milano, Italy in 1971. In 1980-1981, he spent a year as a Visiting Scientist at the Mathematical Sciences Department of the IBM T.J. Watson Research Center. In 1987, he was Visiting Professor at MIT. He has held a number of visiting professor positions at Italian Universities, including Politecnico di Torino, Università di Roma, La Sapienza, Università di Roma, Tor Vergata, Università di Pavia, Università di Pisa, Scuola di Sant’ Anna.

He was a co-founder of Cadence and Synopsys, the two leading companies in the area of Electronic Design Automation. He is the Chief Technology Adviser of Cadence. He is a member of the Board of Directors of Cadence and the Chair of its Technology Committee, UPEK, a company he helped spinning off from ST Microelectronics, Sonics, and Accent, an ST Microelectronics-Cadence joint venture he helped founding. He was a member of the HP Strategic Technology Advisory Board, and is a member of the Science and Technology Advisory Board of General Motors and of the Scientific Council of the Tronchetti Provera foundation and of the Snai dero Foundation. He consulted for many companies including Bell Labs, IBM, Intel, United Technologies Corporation, COMAU, Magneti Marelli, Pirelli, BMW, Daimler-Chrysler, Fujitsu, Kawasaki Steel, Sony, ST, United Technologies Corporation and Hitachi. He was an advisor to the Singapore Government for microelectronics and new ventures. He consulted for Greylock Ventures and for Vertex Investment Venture Capital funds. He is a member of the Advisory Board of Walden International, Sofinnova and Innogest Venture Capital funds and a member of the Investment Committee of a novel VC fund, At lante Ventures, by Banca Intesa/San Paolo. He is the founder and Scientific Director of the Project on Advanced Research on Architectures and Design of Electronic Systems (PARADES), a European Group of Economic Interest supported by Cadence, Magneti-Marelli and ST Microelectronics. He is a member of the Advisory Board of the Lester Center for Innovation of the Haas School of Business and of the Center for Western European Studies and is a member of the Berkeley Roundtable of the International Economy (BRIE). He is a member of the High-Level Group, of the Steering Committee, of the Governing Board and of the Public Authorities Board of the EU Artemis Joint Technology Initiative. He is member of the Scientific Council of the Italian National Science Foundation (CNR).

In 1981, he received the Distinguished Teaching Award of the University of California. He received the worldwide 1995 Graduate Teaching Award of the IEEE (a Technical Field award for “inspirational teaching of graduate students”). In 2002, he was the recipient of the Aristotle Award of the Semiconductor Research Corporation. He has received numerous research awards including the Guillemin-Cauer Award (1982-1983), the Darlington Award (1987-1988) of the IEEE for the best paper bridging theory and applications, and two awards for the best paper published in the IEEE Transactions on CAS and CAD, five best paper awards and one best presentation awards at the Design Automation Conference, other best paper awards at the Real-Time Systems Symposium and the VLSI Conference. In 2001, he was given the Kaufman Award of the Electronic Design Automation Council for “pioneering contributions to EDA”. In 2008, he was awarded the IEEE/RSE Wolfson James Clerk Maxwell Medal "for groundbreaking contributions that have had an exceptional impact on the development of electronics"
and electrical engineering or related fields” with the following citation: "For pioneering innovation and leadership in electronic design automation that have enabled the design of modern electronics systems and their industrial implementation.” In 2009, he received the first ACM/IEEE A. Richard Newton Technical Impact Award in Electronic Design Automation to honor persons for an outstanding technical contribution within the scope of electronic design automation. In 2009, he was awarded an honorary Doctorate by the University of Aalborg in Denmark.

He is an author of over 850 papers, 15 books and 3 patents in the area of design tools and methodologies, large-scale systems, embedded systems, hybrid systems and innovation.

Dr. Sangiovanni-Vincentelli has been a Fellow of the IEEE since 1982 and a Member of the National Academy of Engineering, the highest honor bestowed upon a US engineer, since 1998.

Abstract:

As the complexity of IC design grows, component-based design and correct-by-construction techniques become indispensible to make it possible to develop new application specific designs or even new high volume devices such as microprocessors. While many design methods have been proposed over the years to solve the cost and time-to-market issues, industry is still not able to deploy widely new methods. However, research in recent years has made important inroads, semiconductor companies have implemented more structured design methodologies and EDA/IP enterprises have made significant investment in new tools and design environments. In this talk we will review some of the most interesting approaches that are based on interconnect and communication design as well as heterogeneous composition of components with the goal of pointing out some promising avenues to make SoC design economically attractive for a wide variety of applications.
Plenary Speaker

Michael Keating
Fellow,
Synopsys, Inc.
"Third Revolution: The Search for Scalable Code-Based Design"

Mike Keating is a Synopsys Fellow. He has been with Synopsys for 13 years, focusing on IP development methodology, hardware and software design quality and low power design. His current research focuses on high level design and the challenges of designing extremely complex systems. Mike received his BSEE and MSEE from Stanford University, and has over 25 years experience in ASIC and system design. He is co-author of the Reuse Methodology Manual and the Low Power Methodology Manual. In 2007, ISQED gave Mike the Quality Award for contributions to quality in electronic design.

Abstract:

Over the last 25 years, there have been two major revolutions in how we do digital design: the move to language/synthesis based design (starting in 1986) and design reuse (starting around 1996). We are well overdue for a third revolution. Current design methods are not meeting the needs dictated by the complexity and size of today’s SoC designs, much less the designs of the future.

This talk will describe the current candidates for the next revolution in digital design: high level synthesis, chip generators, and radical extensions to the synthesizable subset of current RTL languages. It will also describe how the economics of SoC design and manufacturing, as well as the economics of EDA, will affect and possibly de-rail the third revolution.
Plenary Speaker

Sandra Woodward
Senior Technical Staff Member, Prism WSP SOC Chip Technical Lead
IBM Corp.
"A Wire-Speed Processor System-on-a-Chip (SOC): Technical Overview and Challenges for a Large Complex SOC used in Next-Generation Systems"

Sandra Woodward is a Senior Technical Staff Member at IBM and is currently the Chip Technical Lead for the Wire-Speed Processor System-on-a-Chip (SOC) development. She is an expert in the area of Microprocessor and Memory Hierarchy Architecture, Design and Methodology. She has experience in System-on-a-Chip (SOC) design, ASIC design, Power(TM) architecture, and Cache and Coherency function design. Mrs. Woodward holds a B.S. degree in Electrical Engineering (EE) from the University of Nebraska and an M.S. degree in EE from Syracuse University.

Abstract:

This presentation will give a technical overview on one of the most complex chips IBM has ever built: the Wire-Speed Processor (WSP) System-on-a-Chip (SOC). This includes the general purpose processing subsystem, the special purpose accelerator subsystem, the network I/O subsystem, and the interconnect for on-chip and off-chip coherency. It will explore the challenges and trade-offs made on the WSP SOC which is integrated into a Next-Generation System. This includes items such as lower power, increased computational performance, and heterogeneous compute elements. It will also discuss the implications of technology advancement on architectural and functional design decisions and point out problems requiring solutions for the large, complex System-on-a-Chip designs in the future.
Effect of a Polywell geometry on a CMOS Photodiode Array

Paul V. Jansz, steven Hinckley and Graham Wild

Optics Research Laboratory, Centre for Communications Engineering Research, Edith Cowan University, Joondalup, WA, Australia.

(p.jansz@ecu.edu.au)

ABSTRACT
The effect of a polywell geometry hybridized with a stacked gradient poly-homojunction architecture, on the response of a CMOS compatible photodiode array was simulated. Crosstalk and sensitivity improved compared to the polywell geometry alone, for both back and front illumination.

Keywords- CMOS; crosstalk; polywell; stacked gradient poly-homojunction; quantum efficiency; wavelength sensitivity

I. INTRODUCTION
The need for CMOS photodiode structures with enhanced UV/blue responsivity has led to the development of polywell structures [1]. The polywell geometry involves having multiple wells per pixel rather than just one well. This geometry has this benefit because each pixel is depleted up to the frontwall and 99.9% of UV/blue light is absorbed within the first 1 μm depth of the device.

Such photodiodes could be used for micro-bioluminescent assays [2]; biosensors based on absorption photometry [3]; Blue Ray optical data storage devices, for which data rates over 500 Mb/s as well as sufficient sensitivity at 410 nm [4] are needed; and for scintillation detector applications [5]. Imaging in the ultra-violet (UV) is of interest to many areas, including particle detection, plasma spectroscopy, astrophysics, and dosimetry [6], as well as to biomedical areas including electrophoretic band detection [7].

Multi-pixel imaging requires enhanced sensitivity and crosstalk suppression. Such polywell photodiodes may benefit quantum efficiency (QE) as well as crosstalk suppression across a broader wavelength band than for conventional PD geometries [8] – [10].

The stacked gradient poly-homojunction (staG) architecture (Fig. 1) has demonstrated improved sensitivity and crosstalk suppression [11] – [12]. Adding this structure to the polywell device may benefit the hybrid in improved response resolution. Complicating the architecture with nested ridges or boundary trenches [13] – [15] only serves to reduce fill factor slightly.

As in previous work, backwall illumination (BW) of such photodiode geometries is of interest due to the ability to tailor individual photodiodes to a specific wavelength band. [16]. To date, studies on polywell photodiodes have only considered frontwall illumination (FW).

This investigation adds to other work performed to achieve devices that balance the maximization of response resolution with the minimization of device fabrication complexity [12] – [21]. Though the staG genre have excellent response characteristics, their fabrication is still complex [15].

Investigating here is the effect on the photodiode’s response resolution of the width and spacing of the polywells. This is with and without the staG geometry. This is investigated at three wavelengths: 400, 633 and 850 nm. The Ghazi [1] geometry is adapted for a three pixel lateral array.

The polywell photodiode responsivity was compared with the staG photodiode geometries...
[15] as well as other simulated vertical single junction photodiode (SJPD) geometries, including the guard junction or double junction photodiode (DJPD). Due to the advantages of back illumination [4], both illumination modes were investigated.

II. METHOD

The crosstalk and maximum quantum efficiency of the central pixel of the three pixel array (Fig. 2) was simulated using SEMICAD DEVICE (v1.2). This geometry allowed comparison with previous simulated photodiodes [12] – [21]. The p-well and n-substrate doping were \(10^{17}\) and \(10^{18}\) cm\(^{-3}\) and the reverse bias voltage was 3 volts.

As previously [12] – [21], the simulated array was scanned at 5 μm intervals along the front and back of the array, using a simulated laser beam of 5 μm width and 0.1 μW power.

Crosstalk was compared using the Relative Crosstalk parameter: The Normalized quantum efficiency (QE) produced at the central Pixel for illumination just outside the central pixel at the 50 μm position.

Sensitivity was defined as the maximum QE produced at the central pixel for illumination over the central pixel.

Three, four, six and nine polywell geometries were simulated at incident wavelengths of 400, 633 and 850 nm, with and without a bilayer StaG architecture.

Figure 2. The polywell photodiode array without the epitlayer which would make it a bilayer Stag polywell photodiode.

III. THEORY

Increasing the number of polywells will deplete more of the pixel volume between each polywell. This will benefit crosstalk and sensitivity. With the given bias and doping the width of the space charge region (SCR) is 2.207 μm benefiting the shorter wavelength light. Carriers generated outside the SCR will undergo diffusion, resulting in a portion being swept into the SCR while the rest either recombine, or contribute to crosstalk.

The StaG geometry affects the carrier distribution by making it energetically more favorable for diffusing carriers to migrate in the direction of decreasing doping. This produces a potential gradient that drives the carriers towards the SCR [15] benefiting crosstalk and sensitivity.

IV. RESULTS AND DISCUSSION

A. Response Resolution at 400nm

The front (FW) and back (BW) illumination response is juxtaposed on the array geometry: Fig. 3 and Fig. 4, respectively.

The front illumination response was affected mostly by the placement of polywells. At 400 nm, most of the photocarriers were generated within 1μm of the front wall, which is in the SCR for light falling over a polywell. This results in efficient collection by the polywell, while reducing the central pixel carrier capture. Alternatively, light falling between the polywells allows some portion of the carriers to diffuse into and be captured by the nearest central pixel’s polywell. This becomes less pronounced as the number of wells increases and the substrate is more depleted.

Back illumination at 400nm shows no effect from polywell placement because carriers are generated near the back wall. The result is a diffusion dominated response and elevated crosstalk. The effect of the bilayer StaG geometry improves crosstalk and sensitivity, especially for front illumination.

Figure 3. The effect of well and placement on FW polywell photodiode array response resolution. A Bilayer Stag polywell PD FW response is included for comparison.
Figure 4. The effect of polywell number and placement on BW polywell photodiode array response resolution. A Blayer Stag polywell 9 PD BW response is included for comparison.

B. Effect of wavelength on Poly 9 PD response.

Adding the StaG geometry immediately improves the crosstalk and QE for both modes of illumination. Secondly, as wavelength increased, the illumination response profile across the array moved closer together.

Not surprisingly, front illumination always shows healthier response resolution. The non-StaG, poly 9 FW 400 is elevated above the StaG 2 Poly 9 FW 400. StaG dynamics, operating in the later, reflect diffusing carriers back towards the SCR, benefiting response resolution.

C. Effect of Wavelength on Relative Crosstalk.

Fig. 5 shows little dependence on the wavelength for all of the back illuminated photodiodes, irrespective of the number of polywells per pixel. The slight reduction in crosstalk with wavelength increase is due to the longer wavelength light generating photocarriers closer to the SCR, increasing carrier capture. Front illuminated pixel crosstalk is dependent on wavelength and the number of polywells. As wavelength increases, less photo-carriers are generated in the SCR, adding to a diffusion response that increases crosstalk. The greater the number of polywells, the more extensive is each pixel's SCR, resulting in lower crosstalk and greater maximum QE.

D. Effect of Wavelength on Sensitivity.

Fig. 6 shows a decreasing trend in sensitivity with increasing wavelength because less light is absorbed. At 400 nm, the wavelength at which the photodiodes have demonstrated optimal response, the front illuminated (FW) pixels show marginally better sensitivity than the back illuminated (BW) pixels. This margin decreases with longer wavelength.

E. Comparing response of polywell photodiodes with other geometries, at 633 nm.

Comparing the polywell and polywell-StaG hybrid with previously simulated photodiodes [15] having the same array dimensions, light and bias conditions is noteworthy. For crosstalk and sensitivity, the hybrid is a better performer at 633 nm than the polywell alone. For crosstalk, both are low in ranking as the geometries are designed to be operated optimally at shorter wavelengths, especially for front illumination. The polywell and polywell-StaG hybrids are able to operate effectively at other wavelengths, just as there are other photodiode geometries that have broadband sensitivity. They include variations on the PIN photodiode geometry [22] – [24].

This research has demonstrated the benefit of the StaG architecture to reducing crosstalk for the polywell photodiode geometry by giving more control of carrier transport to each pixel. Further
research will investigate the effect of additional StaG layers on the polywell-StaG hybrid, with different doping and biasing regimes.

V. CONCLUSIONS

Our research has shown that there is improvement in polywell photodiode crosstalk and sensitivity at 400 nm for the StaG-polywell hybrid over the generic polywell architecture. Though rise and fall times were not obtainable, it is clear that there is a close relationship between crosstalk and pixel rise and fall times, as they both relate to the way a pixel manages its efficient capture of all photocarriers generated in its volume.

VI. REFERENCES