Title

Influence of substrate stage temperature and rotation rate on the magneto-optical quality of RF-sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 garnet thin films

Document Type

Journal Article

Publisher

M D P I AG

Place of Publication

Switzerland

School

Electron Science Research Institute

RAS ID

26666

Comments

Originally published as: Nur-E-Alam, M., Vasiliev, M., & Alameh, K. (2018). Influence of substrate stage temperature and rotation rate on the Magneto-Optical Quality of RF-Sputtered Bi2. 1Dy0. 9Fe3. 9Ga1. 1O12 Garnet Thin Films. Applied Sciences, 8(3), 456. Original article available here.

Abstract

Highly bismuth-substituted iron garnet thin films are prepared on quartz substrates by using a radio frequency (RF) magnetron sputtering technique. We study the factors (process parameters associated with the RF magnetron sputter deposition technique) affecting the magneto-optical (MO) properties of ferrite garnet films of composition Bi2.1Dy0.9Fe3.9Ga1.1O12. All films show high MO response across the visible range of wavelengths after being annealed. In particular, the effects of substrate stage temperature and rotation rate on the various properties of films are studied. Experimental results reveal that the characteristics of garnet films of this type can be tuned and optimized for use in various magnetic field-driven nanophotonics and integrated optics devices, and that, at a substrate stage rotation rate near 16 revolutions per minute, the MO quality of the developed MO films is the best, in comparison with films deposited at other rotation rates. To the best of our knowledge, this is the first report on the effects of deposition parameters on the properties of garnet films of this stoichiometry.

DOI

10.3390/app8030456

Access Rights

free_to_read

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS