Document Type

Journal Article

Publisher

Frontiers Media S.A.

School

School of Science

Comments

Originally published as: Tanner, G. J., Colgrave, M. L., Blundell, M. J., Howitt, C. A., & Bacic, A. (2019). Hordein accumulation in developing barley grains. Frontiers in Plant Science, 10, Article 649. Original publication available here

Abstract

The temporal pattern of accumulation of hordein storage proteins in developing barley grains was studied by enzyme-linked immunosorbent assay (ELISA), western blot and liquid chromatography tandem mass spectrometry (LC-MS/MS). Hordein accumulation was compared to the pattern seen for two abundant control proteins, serpin Z4 (an early accumulator) and lipid transferase protein (LTP1, a late accumulator). Hordeins were detected from 6 days post-anthesis (DPA) and peaked at 30 DPA. Changes in fresh weight indicate that desiccation begins at 20 DPA and by 37 DPA fresh weight had decreased by 35%. ELISA analysis of hordein content, expressed on a protein basis, increased to a maximum at 30 DPA followed by a 17% decrease by 37 DPA. The accumulation of 39 tryptic and 29 chymotryptic hordein peptides representing all classes of hordein was studied by LC-MS/MS. Most peptides increased to a maximum at 30 DPA, and either remained at the maximum or did not decrease significantly. Only five tryptic peptides, members of the related B1- and γ1-hordeins decreased significantly by 21–51% at 37 DPA. Thus, the concentration of some specific peptides was reduced while remaining members of the same family were not affected. The N-terminal signal region was removed by proteolysis during co-translation. In addition to a suite of previously characterized hordeins, two novel barley B-hordein isoforms mapping to wheat low molecular weight glutenins (LMW-GS-like B-hordeins), and two avenin-like proteins (ALPs) sharing homology with wheat ALPs, were identified. These identified isoforms have not previously been mapped in the barley genome. Cereal storage proteins provide significant nutritional content for human consumption and seed germination. In barley, the bulk of the storage proteins comprise the hordein family and the final hordein concentration affects the quality of baked and brewed products. It is therefore important to study the accumulation of hordeins as this knowledge may assist plant breeding for improved health outcomes (by minimizing triggering of detrimental immune responses), nutrition and food processing properties.

DOI

10.3389/fpls.2019.00649

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Life Sciences Commons

Share

 
COinS