Title

Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light

Document Type

Journal Article

Publication Title

Materials Science and Engineering C

Publisher

Elsevier

School

School of Engineering

Funders

Australian Research Council.

Grant Number

ARC Number : DP160104632

Comments

Karami, A., Xie, Z., Zhang, J., Kabir, M. S., Munroe, P., Kidd, S., & Zhang, H. (2020). Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light. Materials Science and Engineering: C, 107, Article 110220. https://doi.org/10.1016/j.msec.2019.110220

Abstract

ZnO nanoparticles doped with I and Ag were prepared via a solvothermal method. Characterizations of the as-synthesised samples were carried out using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis spectrometry, Photoluminescence, transmission electron microscopy and scanning electron microscopy. The nanoparticles exhibit light absorption for wide spectra from ultra-violet (UV) to visible light. The antimicrobial efficacy was evaluated against Escherichia coli (MG1655) and Staphylococcus aureus (USA300) as models of Gram-negative and Gram-positive microorganisms, respectively. The double-doped nanoparticles demonstrated their potent efficacy against both types of microorganisms and they may have great potential in combating infectious diseases. More importantly, the insights into the mechanisms underlying the antimicrobial effects were revealed: synergistic effect of reactive oxygen species (ROS) generation and Ag+ release. Specifically, the ROS generation was believed to be dominant in the I:Ag:ZnO sample under visible light, while both ROS generation and Ag+ release were found to play an important role in the bacteria-killing by Ag:I:ZnO in the visible light and dark conditions. The Ag+ release was found to be the dominant antimicrobial mechanism for the Ag:ZnO NP sample in our experiment.

DOI

10.1016/j.msec.2019.110220

Share

 
COinS