Document Type
Journal Article
Publisher
IEEE
Faculty
Faculty of Computing, Health and Science
School
School of Computer and Information Science
RAS ID
4818
Abstract
We present an algorithm for calculating hypervolume exactly, the Hypervolume by Slicing Objectives (HSO) algorithm, that is faster than any that has previously been published. HSO processes objectives instead of points, an idea that has been considered before but that has never been properly evaluated in the literature. We show that both previously studied exact hypervolume algorithms are exponential in at least the number of objectives and that although HSO is also exponential in the number of objectives in the worst case, it runs in significantly less time, i.e., two to three orders of magnitude less for randomly generated and benchmark data in three to eight objectives. Thus, HSO increases the utility of hypervolume, both as a metric for general optimization algorithms and as a diversity mechanism for evolutionary algorithms
DOI
10.1109/TEVC.2005.851275
Access Rights
free_to_read
Comments
This is an Author's Accepted Manuscript of: While, L., Hingston, P., Barone, L., & Huband, S. (2006). A Faster Algorithm for Calculating Hypervolume. IEEE Transactions on Evolutionary Computation, 10(1), pp. 29-38. Available here
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.