Emus as non-standard seed dispersers and their potential for long-distance dispersal

Document Type

Journal Article

Publisher

Blackwell Scientific

Faculty

Faculty of Computing, Health and Science

School

School of Natural Sciences / Centre for Ecosystem Management

RAS ID

4631

Comments

Calviño‐Cancela, M., R Dunn, R., Van Etten, E. J., & B Lamont, B. (2006). Emus as non‐standard seed dispersers and their potential for long‐distance dispersal. Ecography, 29(4), 632-640. Available here

Abstract

Long-distance seed dispersal may have important consequences for species range, migration rates, metapopulation dynamics, and gene flow. Plants have evolved various adaptations for seed dispersal by standard agents, with typical dispersal distances associated with them. Seeds may also be dispersed by non-standard agents for which they do not show any apparent adaptation and may reach long distances. By sampling the droppings of emus Dromaius novaehollandiae at three localities in Western Australia, we investigated their potential to act as long-distance dispersers of seeds with adaptations for dispersal modes other than endozoochory, such as unassisted, ant, wind and exozoochory, for which they act as non-standard agents. Seventy-seven plant species with five types of dispersal syndromes were found in the 112 droppings analysed, with at least 68 having viable seeds. Although endozoochory was the most frequent syndrome, the presence of other syndromes was important in terms of number of species (61%) and seeds (50%). Estimates of species richness indicated that an increase in sampling effort would increase the number of species observed, especially among non-endozoochores. As a consequence of their long gut retention times and high mobility, emus can provide long-distance dispersal opportunities that may be especially relevant for species with dispersal modes of typically short distances (unassisted, ant). Our results suggest that the role of emus as non-standard agents for long-distance dispersal should be taken into account for understanding current geographic ranges, gene flow and metapopulation dynamics of some plant species, as well as for predicting their future responses to climate change and fragmentation.

DOI

10.1111/j.0906-7590.2006.04677.x

Share

 
COinS
 

Link to publisher version (DOI)

10.1111/j.0906-7590.2006.04677.x