Document Type

Journal Article

Publisher

Optical Society of America

Faculty

Faculty of Computing, Health and Science

School

Electron Science Research Institute (ESRI)

RAS ID

8407

Comments

This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22680. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Abstract

A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below −36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

Included in

Engineering Commons

Share

 
COinS