Power Outputs of a Machine Squat-Jump Across a Spectrum of Loads

Document Type

Journal Article


Computing, Health and Science


School of Exercise, Biomedical and Health Science




Originally published as: NIGEL, K. H. (2007). POWER OUTPUTS OF A MACHINE SQUAT-JUMP ACROSS A SPECTRUM OF LOADS. Journal of Strength and Conditioning Research, 21(4), 1260-1264. Original article available here


The load that maximizes mechanical power output (Pmax) has received considerable research attention owing to its perceived importance to training prescription. However, it may be that identifying Pmax is of little importance if the difference in power output about Pmax is insubstantial. Additionally, comparing the effect of load on power output between studies is problematic due to various methodological differences. The purpose of this study therefore was to quantify the concentric power output for a machine squat-jump across a spectrum of loads (10-100% of 1 repetition maximum [1RM]). To estimate Pmax load and proximate loads a quadratic was fitted to the power output (Watts) and load (% of 1RM) of 18 well-trained rugby athletes. Pmax for peak and mean power output occurred at 21.6 +/- 7.1% of 1RM (mean +/- SD) and 39.0 +/- 8.6% of 1RM, respectively. A 20% change in load either side of the maximum resulted in a mean decrease of only 9.9% (90% confidence limits +/-2.4%) and 5.4% (+/-0.9%) in peak and mean power respectively; standard deviations about these means (representing individual differences in the decrease) were 6.0% and 2.1%, respectively (90% confidence limits x//1.34). It appears that most athletes have a broad peak in their power profile for peak or mean power. The preoccupation of identifying one load for maximizing power output would seem less meaningful than many practitioners and scientists believe.