Title

Effects of Starting Strategy on 5-min Cycling Time-Trial Performance

Document Type

Journal Article

Faculty

Computing, Health and Science

School

Exercise, Biomedical and Health Science, Centre for Exercise and Sports Science Research

RAS ID

8033

Comments

Originally published as: Aisbett, B., Le Rossignol, P., McConell, G. K., Abbiss, C. R., & Snow, R. (2009). Effects of starting strategy on 5-min cycling time-trial performance. Journal of sports sciences, 27(11), 1201-1209. Original article available here

Abstract

The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists ([Vdot]O2peak 62.8 ± 5.9 ml · kg−1 · min−1; maximal aerobic power output 340 ± 43 W; mean ± s) performed three cycling time-trials where the total external work (102.7 ± 13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7 ± 3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53 ± 0:11 min:s) were shorter than for the even-start (5:04 ± 0:11 min:s; 95% CI = 5 to 18 s, effect size = 0.65, P < 0.001) and slow-start time-trial (5:09 ± 0:11 min:s; 95% CI = 7 to 24 s, effect size = 1.00, P < 0.001). Mean [Vdot]O2 during the fast-start trials (4.31 ± 0.51 litres · min−1) was 0.18 ± 0.19 litres · min−1 (95% CI = 0.07 to 0.30 litres · min−1, effect size = 0.94, P = 0.003) higher than the even- and 0.18 ± 0.20 litres · min−1 (95% CI = 0.5 to 0.30 litres · min−1, effect size = 0.86, P = 0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.

 

Link to publisher version (DOI)

10.1080/02640410903114372