Document Type

Journal Article




Exercise, Biomedical and Health Science




This article was originally published as: Humphries, B., Warman, G., Purton, J., Doyle, T. L., & Dugan, E. (2004). The influence of vibration on muscle activation and rate of force development during maximal isometric contractions. Journal of Sports Science and Medicine, 3(1), 16-22. Original article available here


At present there appears to be a need for research conducted on the effects of vibration on the contractile ability of skeletal muscle tissue. The aim of this study was to address this issue by examining the effects of a superimposed muscle/tendon vibration at 50.42±1.16 Hz (acceleration 13.24 ± 0.18ms-2: displacement ≈5mm) on muscular activation and maximal isometric contraction. Sixteen participants with a mean age, body mass, and height of 22 ± 4.4 years, 73.2 ± 11.7 kg and 173.1 ± 9.7 cms, respectively, were recruited for this study. Electromyography and accelerometry from the rectus femoris, and maximal isometric force data characteristics were collected from the dominant limb under conditions of vibration, and no-vibration. A superimposed 50 Hz vibration was used during the contraction phase for the maximal isometric leg extension for the condition of vibration. A one-way ANOVA revealed no significant (p > 0.05) differences between the vibration and no-vibration conditions for peak normalized EMGRMS (84.74% Vs 88.1%) values. An ANOVA revealed significant (p > 0.05) differences between the peak fundamental frequencies of the FFT between the conditions vibration (27.1 ± 12.2 Hz) and no-vibration (9.8 ± 3.5 Hz). Peak isometric force, peak rate of force development, rate of force development at times 0.05, 0.01, 0.1, 0.5 seconds, and rate of force development at 50, 75, and 90% of peak force were not significantly different. The results of this study suggest that the application of vibration stimulation at 50 Hz during the contraction does not contribute to muscle activation, or enhance force production for maximal isometric contractions.

Access Rights

JSSM is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.