Title

Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players

Document Type

Journal Article

Publisher

Lippincott Williams & Wilkins

Faculty

Computing, Health and Science

School

Exercise, Biomedical and Health Science, Centre for Exercise and Sports Science Research

RAS ID

9639

Comments

Originally published as: Buchheit, M., Al Haddad, H., Millet, G. P., Lepretre, P. M., Newton, M., & Ahmaidi, S. (2009). Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players. The Journal of Strength & Conditioning Research, 23(1), 93-100. Original available here

Abstract

Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): 93-100, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 ± 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRR[tau]) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake ([latin capital V with dot above]o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for [latin capital V with dot above]o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHR[tau] (81.9 ± 18.2 vs. 60.5 ± 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 ± 2.4 and 7.0 ± 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and [latin capital V with dot above]o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.

DOI

10.1519/JSC.0b013e31818b9721

 

Link to publisher version (DOI)

10.1519/JSC.0b013e31818b9721