Authors
Luke Mappley
Michael Black, Edith Cowan University
Manal AbuOun
Alistair C. Darby
Martin J. Woodward
Julian Parkhill
A. Keith Turner
Matthew I. Bellgard
Tom La
Nyree D. Phillips
Roberto M. La Ragione
David J. Hampson
Document Type
Journal Article
Publisher
BioMed Central
Faculty
Faculty of Computing, Health and Science
School
School of Medical Sciences
RAS ID
14023
Abstract
Background: The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype.Results: Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping.Conclusions: The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
DOI
10.1186/1471-2164-13-454
Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 License.
Comments
Mappley, L., Black, M. L., AbuOun, M., Darby, A., Woodward, M., Parkhill, J., Turner, A., Bellgard, M., La, T., Phillips, N., La Ragione, R., & Hampson, D. (2012). Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics, 13(1), art. no. 454 . Available here