Towards Effective Algorithms for Intelligent Defense Systems

Document Type

Conference Proceeding

Publisher

Springer

Faculty

Faculty of Computing, Health and Science

School

ECU Security Research Institute

RAS ID

14823

Comments

Johnstone, M. N., & Woodward, A. J. (2012). Towards Effective Algorithms for Intelligent Defense Systems. Proceedings of The 4th International Symposium on Cyberspace Safety and Security (CSS 2012). (pp. 498-508). Melbourne, Australia. Springer. Available here

Abstract

With the volume of data required to be analysed and interpreted by security analysts, the possibility of human error looms large and the consequences possibly harmful for some systems in the event of an adverse event not being detected. In this paper we suggest machine learning algorithms that can assist in supporting the security function effectively and present a framework that can be used to choose the best algorithm for a specific domain. A qualitative framework was produced, and it is suggested that a naive Bayesian classifier and artificial neural network based algorithms are most likely the best candidates for the proposed application. A testing framework is proposed to conduct a quantitative evaluation of the algorithms as the next step in the determination of best fit for purpose algorithm. Future research will look to repeat this process for cyber security specific applications, and also examine GPGPU optimisations.

DOI

10.1007/978-3-642-35362-8_37

Access Rights

subscription content

Share

 
COinS