Document Type
Journal Article
Faculty
Faculty of Computing, Health and Science
School
School of Exercise and Health Sciences / Centre for Exercise and Sports Science Research
RAS ID
14664
Abstract
This investigation describes the sprint performances of the highest internationally ranked professional male road sprint cyclist during the 2008-2011 Grand Tours. Sprint stages were classified as won, lost, or dropped from the front bunch before the sprint. Thirty-one stages were video-analyzed for average speed of the last km, sprint duration, position in the bunch, and number of teammates at 60, 30, and 15 s remaining. Race distance, total elevation gain (TEG), and average speed of 45 stages were determined. Head-to-head performances against the 2nd-5th most successful professional sprint cyclists were also reviewed. In the 52 Grand Tour sprint stages the subject started, he won 30 (58%), lost 15 (29%), was dropped in 6 (12%), and had 1 crash. Position in the bunch was closer to the front and the number of team members was significantly higher in won than in lost at 60, 30, and 15 s remaining (P < .05). The sprint duration was not different between won and lost (11.3 ± 1.7 and 10.4 ± 3.2 s). TEG was significantly higher in dropped (1089 ± 465 m) than in won and lost (574 ± 394 and 601 ± 423 m, P < .05). The ability to finish the race with the front bunch was lower (77%) than that of other successful sprinters (89%). However, the subject was highly successful, winning over 60% of contested stages, while his competitors won less than 15%. This investigation explores methodology that can be used to describe important aspects of road sprint cycling and supports the concept that tactical aspects of sprinting can relate to performance outcomes.
DOI
10.1123/ijspp.8.3.336
Access Rights
free_to_read
Comments
This is an Author's Accepted Manuscript of: Menaspà, P., Abbiss, C., & Martin, D. (2012). Performance analysis of a world-class sprinter during cycling grand tours. International Journal of Sports Physiology and Performance, 8(3), 336-340. Available here © Human Kinetics, Inc