Title

Lizard tricks: Overcoming conflicting requirements of speed versus climbing ability by altering biomechanics of the lizard stride

Document Type

Journal Article

Publisher

The Company of Biologists Ltd.

Faculty

Faculty of Business and Law

School

School of Business

RAS ID

17525

Comments

This article was originally published as: Clemente, C., Withers, P., Thompson, G., & Lloyd, D. R. (2013). Lizard tricks: Overcoming conflicting requirements of speed versus climbing ability by altering biomechanics of the lizard stride. Journal of Experimental Biology, 216(20), 3854-3862. Original article available here

Abstract

Adaptations promoting greater performance in one habitat are thought to reduce performance in others. However, there are many examples of animals in which, despite habitat differences, such predicted differences in performance do not occur. One such example is the relationship between locomotory performance to habitat for varanid lizards. To explain the lack of difference in locomotor performance we examined detailed observations of the kinematics of each lizard's stride. Differences in kinematics were greatest between climbing and non-climbing species. For terrestrial lizards, the kinematics indicated that increased femur adduction, femur rotation and ankle angle all contributed positively to changes in stride length, but they were constrained for climbing species, probably because of biomechanical restrictions on the centre of mass height (to increase stability on vertical surfaces). Despite climbing species having restricted stride length, no differences have been previously reported in sprint speed between climbing and non-climbing varanids. This is best explained by climbing varanids using an alternative speed modulation strategy of varying stride frequency to avoid the potential trade-off of speed versus stability on vertical surfaces. Thus, by measuring the relevant biomechanics for lizard strides, we have shown how kinematic differences among species can mask performance differences typically associated with habitat variation.

DOI

10.1242/jeb.089060

Access Rights

Open Access

Share

 
COinS