Australian Information Security Management Conference

Document Type

Conference Proceeding

Publisher

SRI Security Research Institute, Edith Cowan University, Perth, Western Australia

Comments

This paper was originally presented at The Proceedings of [the] 13th Australian Information Security Management Conference, held from the 30 November – 2 December, 2015 (pp. 57-64), Edith Cowan University Joondalup Campus, Perth, Western Australia.

Abstract

Building Automation Systems (BAS), alternatively known as Building Management Systems (BMS), which centralise the management of building services, are often connected to corporate networks and are routinely accessed remotely for operational management and emergency purposes. The protocols used in BAS, in particular BACnet, were not designed with security as a primary requirement, thus the majority of systems operate with sub-standard or non-existent security implementations. As intrusion is thus likely easy to achieve, intrusion detection systems should be put in place to ensure they can be detected and mitigated. Existing intrusion detection systems typically deal only with known threats (signature-based approaches) or suffer from a high false positive rate (anomaly-based approaches). In this paper we present an overview of the problem space with respect to BAS, and suggest that state aware machine learning techniques could be used to discover threats that comprise a collection of legitimate commands. We provide a first step showing that the concept can be used to detect an attack where legitimate write commands being sent in rapid succession may cause system failure. We capture the state as a ‘time since last write’ event and use a basic artificial neural network classifier to detect attacks.

DOI

10.4225/75/57b69b5bd938c

Share

 
COinS