Date of Award

2014

Degree Type

Thesis

Degree Name

Doctor of Philosophy

School

School of Engineering

Faculty

Health, Engineering and Science

First Advisor

Professor Kamal Alameh

Second Advisor

Dr Sreten Askraba

Third Advisor

Dr Mikhail Vasiliev

Abstract

The management of weeds in agriculture is a time consuming and expensive activity, including in Australia where the predominant strategy is blanket spraying of herbicides. This approach wastes herbicide by applying it in areas where there are no weeds. Discrimination of different plant species can be performed based on the spectral reflectance of the leaves. This thesis describes the development of a sensor for automatic spot spraying of weeds within crop rows. The sensor records the relative intensity of reflected light in three narrow wavebands using lasers as an illumination source.

A prototype weed sensor which had been previously developed was evaluated and redesigned to improve its plant discrimination performance. A line scan image sensor replacement was chosen which reduced the noise in the recorded spectral reflectance properties. The switching speed of the laser sources was increased by replacing the laser drivers. The optical properties of the light source were improved to provide a more uniform illumination across the viewing area of the sensor. A new opto-mechanical system was designed and constructed with the required robustness to operate the weed sensor in outdoor conditions. Independent operation of the sensor was made possible by the development of hardware and software for an embedded controller which operated the opto-electronic components and performed plant discrimination.

The first revised prototype was capable of detecting plants at a speed of 10 km/h in outdoor conditions with the sensor attached to a quad bike. However, it was not capable of discriminating different plants. The final prototype included a line scan sensor with increased dynamic range and pixel resolution as well as improved stability of the output laser power. These changes improved the measurement of spectral reflectance properties of plants and provided reliable discrimination of three different broadleaved plants using only three narrow wavelength bands. A field trial with the final prototype demonstrated successful discrimination of these three different plants at 5 km/h when a shroud was used to block ambient light.

A survey of spectral reflectance of four crops (sugarcane, cotton, wheat and sorghum) and the weeds growing amongst these crops was conducted to determine the potential for use of the prototype weed sensor to control spot-spraying of herbicides. Visible reflectance spectra were recorded from individual leaves using a fibre spectrometer throughout the growing season for each crop. A discriminant analysis was conducted based on six narrow wavebands extracted from leaf level spectral reflectance measured with a spectrometer. The analysis showed the potential to discriminate cotton and sugarcane from

Share

 
COinS