Author Identifiers

Kyaw Kyaw Htat
ORCID: 0000-0002-1144-5764

Date of Award

2018

Degree Type

Thesis

Degree Name

Doctor of Information Technology

School

School of Science

First Advisor

Professor Patricia Williams

Second Advisor

Dr Vincent McCauley

Third Advisor

Dr Zubair Baig

Fourth Advisor

Dr Krishnun Sansurooah

Field of Research Code

080402, 080702

Abstract

This thesis investigates mobile electronic transfer of prescription (ETP) in compliance with the security requirements mandated by the Australian healthcare industry and proposes a framework for the development of an Android mobile electronic prescription transfer application. Furthermore, and based upon the findings and knowledge from constructing this framework, another framework is also derived for assessing Android mobile ETP applications for their security compliance.

The centralised exchange model-based ETP solution currently used in the Australian healthcare industry is an expensive solution for on-going use. With challenges such as an aging population and the rising burden of chronic disease, the cost of the current ETP solution’s operational infrastructure is certain to rise in the future. In an environment where it is increasingly beneficial for patients to engage in and manage their own information and subsequent care, this current solution fails to offer the patient direct access to their electronic prescription information. The current system also fails to incorporate certain features that would dramatically improve the quality of the patient’s care and safety, i.e. alerts for the patient’s drug allergies, harmful dosage and script expiration. Over a decade old, the current ETP solution was essentially designed and built to meet legislation and regulatory requirements, with change-averting its highest priority. With little, if any, provision for future growth and innovation, it was not designed to cater to the needs of the ETP process. This research identifies the gap within the current ETP implementation (i.e. dependency on infrastructure, significant on-going cost and limited availability of the patient’s medication history) and proposes a framework for building a secure mobile ETP solution on the Android mobile operating system platform which will address the identified gap.

The literature review part of this thesis examined the significance of ETP for the nation’s larger initiative to provide an improved and better maintainable healthcare system. The literature review also revealed the stance of each jurisdiction, from legislative and regulatory perspectives, in transitioning to the use of a fully electronic ETP solution. It identified the regulatory mandates of each jurisdiction for ETP as well as the security standards by which the current ETP implementation is iii governed so as to conform to those regulatory mandates. The literature review part of the thesis essentially identified and established how the Australian healthcare industry’s various prescription-related legislations and regulations are constructed, and the complexity of this construction for eTP.

The jurisdictional regulatory mandates identified in the literature review translate into a set of security requirements. These requirements establish the basis of the guiding framework for the development of a security-compliant Android mobile ETP application. A number of experimentations were conducted focusing on the native security features of the Android operating system, as well as wireless communication technologies such as NFC and Bluetooth, in order to propose an alternative mobile ETP solution with security assurance comparable to the current ETP implementation. The employment of a proof-of-concept prototype such as this alongside / coupled with a series of iterative experimentations strengthens the validity and practicality of the proposed framework.

The first experiment successfully proved that the Android operating system has sufficient encryption capabilities, in compliance with the security mandates, to secure the electronic prescription information from the data at rest perspective. The second experiment indicated that the use of NFC technology to implement the alternative transfer mechanism for exchanging electronic prescription information between ETP participating devices is not practical. The next iteration of the experimentation using Bluetooth technology proved that it can be utilised as an alternative electronic prescription transfer mechanism to the current approach using the Internet. These experiment outcomes concluded the partial but sufficient proofof- concept prototype for this research.

Extensive document analysis and iterative experimentations showed that the framework constructed by this research can guide the development of an alternative mobile ETP solution with both comparable security assurance to and better access to the patient’s medication history than the current solution. This alternative solution would present no operational dependence upon infrastructure and its associated, ongoing cost to the nation’s healthcare expenditure. In addition, use of this mobile ETP alternative has the potential to change the public’s perception (i.e. acceptance from regulatory and security perspectives) of mobile healthcare solutions, thereby paving the way for further innovation and future enhancements in eHealth.

Share

Paper Location

 
COinS