Date of Award

2012

Document Type

Thesis

Publisher

Edith Cowan University

Degree Name

Master of Engineering Science

School

School of Engineering

Faculty

Faculty of Computing, Health and Science

First Supervisor

Professor Daryoush Habib

Second Supervisor

Dr Iftekhar Ahmad

Abstract

The IEEE 802.11 Wireless Local Area Network (WLAN), commonly known as Wi-Fi, has emerged as a popular internet access technology and researchers are continuously working on improvement of the quality of service (QoS) in WLAN by proposing new and efficient schemes. Voice and video over Internet Protocol (VVoIP) applications are becoming very popular in Wi-Fi enabled portable/handheld devices because of recent technological advancements and lower service costs. Different from normal voice and video streaming, these applications demand symmetric throughput for the upstream and downstream. Existing Wi-Fi standards are optimised for generic internet applications and fail to provide symmetric throughput due to traffic bottleneck at access points. Performance analysis and benchmarking is an integral part of WLAN research, and in the majority of the cases, this is done through computer simulation using popular network simulators such as Network Simulator ff 2 (NS-2) or OPNET. While computer simulation is an excellent approach for saving time and money, results generated from computer simulations do not always match practical observations. This is why, for proper assessment of the merits of a proposed system in WLAN, a trial on a practical hardware platform is highly recommended and is often a requirement. In this thesis work, with a view to address the abovementioned challenges for facilitating VoIP and VVoIP services over Wi-Fi, two key contributions are made: i) formulating a suitable medium access control (MAC) protocol to address symmetric traffic scenario and ii) firmware development of this newly devised MAC protocol for real WLAN hardware. The proposed solution shows signifocant improvements over existing standards by supporting higher number of stations with strict QoS criteria. The proposed hardware platform is available off-the-shelf in the market and is a cost effective way of generating and evaluating performance results on a hardware system.

Share

 
COinS