Date of Award


Degree Type


Degree Name

Master of Engineering Science


School of Engineering


Computing, Health and Science

First Advisor

Dr Ganesh Kothapalli

Second Advisor

Dr Majid Tolouei-Rad


Mobile robots could be used to search, find, and relocate objects in many types of manufacturing operations and environments. In this scenario, the target objects might reside with equal probability at any location in the environment and, therefore, the robot must navigate and search the whole area autonomously, and be equipped with specific sensors to detect objects. Novel challenges exist in developing a control system, which helps a mobile robot achieve such tasks, including constructing enhanced systems for navigation, and vision-based object recognition. The latter is important for undertaking the exploration task that requires an optimal object recognition technique.

In this thesis, these challenges, for an indoor environment, were divided into three sub-problems. In the first, the navigation task involved discovering an appropriate exploration path for the entire environment, with minimal sensing requirements. The Bug algorithm strategies were adapted for modelling the environment and implementing the exploration path. The second was a visual-search process, which consisted of employing appropriate image-processing techniques, and choosing a suitable viewpoint field for the camera. This study placed more emphasis on colour segmentation, template matching and Speeded-Up Robust Features (SURF) for object detection. The third problem was the relocating process, which involved using a robot’s gripper to grasp the detected, desired object and then move it to the assigned, final location. This also included approaching both the target and the delivery site, using a visual tracking technique.

All codes were developed using C++ and C programming, and some libraries that included OpenCV and OpenSURF were utilized for image processing. Each control system function was tested both separately, and then in combination as a whole control program. The system performance was evaluated using two types of mobile robots: legged and wheeled. In this study, it was necessary to develop a wheeled search robot with a high performance processor. The experimental results demonstrated that the methodology used for the search robots was highly efficient provided the processor was adequate. It was concluded that it is possible to implement a navigation system within a minimum number of sensors if they are located and used effectively on the robot’s body. The main challenge within a visual-search process is that the environmental conditions are difficult to control, because the search robot executes its tasks in dynamic environments. The additional challenges of scaling these small robots up to useful industrial capabilities were also explored.

Included in

Robotics Commons