Date of Award

1-1-2004

Document Type

Thesis

Publisher

Edith Cowan University

Degree Name

Doctor of Philosophy

School

School of Engineering and Mathematics

Faculty

Faculty of Computing, Health and Science

First Supervisor

Associate Professor Abdessalam Bouzerdoum

Second Supervisor

Dr Ganesh Kothapalli

Abstract

Shunting inhibition is a powerful computational mechanism that plays an important role in sensory neural information processing systems. It has been extensively used to model some important visual and cognitive functions. It equips neurons with a gain control mechanism that allows them to operate as adaptive non-linear filters. Shunting Inhibitory Artificial Neural Networks (SIANNs) are biologically inspired networks where the basic synaptic computations are based on shunting inhibition. SIANNs were designed to solve difficult machine learning problems by exploiting the inherent non-linearity mediated by shunting inhibition. The aim was to develop powerful, trainable networks, with non-linear decision surfaces, for classification and non-linear regression tasks. This work enhances and extends the original SIANN architecture to a more general form called the Generalised Feedforward Neural Network (GFNN) architecture, which contains as subsets both SIANN and the conventional Multilayer Perceptron (MLP) architectures. The original SIANN structure has the number of shunting neurons in the hidden layers equal to the number of inputs, due to the neuron model that is used having a single direct excitatory input. This was found to be too restrictive, often resulting in inadequately small or inordinately large network structures.

Share

 
COinS