Title

Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors

Document Type

Journal Article

Publication Title

Applied Catalysis B: Environmental

Volume

314

Publisher

Elsevier

School

School of Science

Funders

Shenzhen Bay Laboratory (SZBL2019062801005) / Shenzhen Science and Technology Program (KQTD20170809110344233) / Natural Science Foundation of Guangdong Province (No. 2019A1515010762) / National Natural Science Foundation of China (51802060) / Australian Research Council (DP190103548)

Grant Number

ARC Number : DP190103548

Grant Link

http://purl.org/au-research/grants/arc/DP190103548

Comments

Ye, H., Wang, S., Wang, Y., Guo, P., Wang, L., Zhao, C., ... & Ma, X. (2022). Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors. Applied Catalysis B: Environmental, 314, 121484. https://doi.org/10.1016/j.apcatb.2022.121484

Abstract

Wastewater remediation using micro/nanomotors is a hot topic, and MnO2 based materials have become fascinating alternatives to rare noble metal-based micro/nanomotors. Herein, we demonstrate facile and large-scale synthesis of Fe-MnO2 core-shell micromotors for antibiotic pollutant removal. Heat-treatment results in a phase transformation of MnO2 with formation of iron oxides and partially exfoliates the MnO2 nanoplate shell structure to promote mobility. The iron-manganese oxide micromotors exhibit an efficient removal of tetracycline antibiotics via a combination of catalytic degradation and adsorptive bubble separation. For the first time, atomic H* was found to participate in the micromotor-assisted degradation process, resulting in optimal Fenton reaction in neutral conditions with a good decontamination performance. Owing to the merits of abundance, magnetic recovery, facile fabrication, good motion, and environmental friendliness, as well as decontamination performance in a wide pH range, these core-shell micromotors demonstrate a promising candidate in practical wastewater treatment.

DOI

10.1016/j.apcatb.2022.121484

Access Rights

subscription content

Share

 
COinS