Document Type

Journal Article

Publication Title

BMC Sports Science, Medicine and Rehabilitation

Volume

13

Issue

1

Publisher

Springer

School

School of Medical and Health Sciences / Centre for Exercise and Sports Science Research

RAS ID

37018

Comments

Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nosaka, K., & Nakamura, M. (2021). Cross-education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Science, Medicine and Rehabilitation, 13, article 105. https://doi.org/10.1186/s13102-021-00298-w

Abstract

Background: Unilateral resistance training increases the strength of the contralateral non-trained homologous muscles known as the cross-education effect. We tested the hypothesis that unilateral eccentric resistance training (ET) would induce greater and longer-lasting cross-education effect when compared with concentric resistance training (CT). Methods: Young (20–23 y) participants were allocated to ET (5 males, 4 females) or CT (5 males, 4 females) group that performed unilateral progressive ET or CT of the elbow flexors, twice a week for 5 weeks (10 sessions) followed by a 5-week detraining, and control group (7 males, 6 females) that did not perform any training. Maximum voluntary isometric contraction torque of the elbow flexors (MVIC), one-repetition maximum of concentric dumbbell curl (1-RM), and biceps brachii and brachialis muscle thickness (MT) were measured from the trained and non-trained arms before, several days after the last training session, and 5 weeks later. A ratio between the trained and non-trained arms for the change in MVIC or 1-RM from pre- to post-training (cross-body transfer ratio) was compared between ET and CT groups. Results: The control group did not show significant changes in any variables. Both ET and CT increased (P < 0.05) MVIC (22.5 ± 12.3 % vs. 26.0 ± 11.9 %) and 1-RM (28.8 ± 6.6 % vs. 35.4 ± 12.9 %) of the trained arm without a significant difference between groups. MVIC was maintained after detraining for ET but returned to the baseline for CT, and 1-RM was maintained after detraining for both ET and CT. For the non-trained arm, MVIC (22.7 ± 17.9 % vs. 12.2 ± 10.2 %) and 1-RM (19.9 ± 14.6 % vs. 24.0 ± 10.6 %) increased similarly (P > 0.05) after ET and CT, and MVIC returned to the baseline after detraining, but 1-RM was maintained for both groups. An increase (P < 0.05) in MT was found only after ET for the trained arm (7.1 ± 6.1 %). The cross-body transfer ratio for MVIC was greater (P < 0.05) for ET (90.9 ± 46.7 %) than CT (49.0 ± 30.0 %). Conclusions: These results did not support the hypothesis and showed similar changes in the most of the variables between ET and CT for the trained and non-trained arms, and strong cross-education effects on MVIC and 1-RM, but less detraining effect after ET than CT on MVIC of the trained arm. Trial registration: University Hospital Medical Information Network Clinical Trials Registry (UMIN000044477; Jun 09, 2021).

DOI

10.1186/s13102-021-00298-w

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Research Themes

Society and Culture

Priority Areas

Human movement and performance

Share

 
COinS