Effect of low temperature pre-deformation on precipitation behavior and microstructure during fabrication
Document Type
Journal Article
Publication Title
Journal of Nuclear Science and Technology
Publisher
Taylor & Francis
School
School of Engineering
RAS ID
21199
Abstract
The effect of low-temperature pre-deformation on the microstructural evolution of a Zr–Sn–Nb–Fe–Cu–O alloy was investigated by optical metallography, scanning electron microscope, transmission electron microscope, and electron backscattering diffraction (EBSD). It is found that a reasonably homogeneous and fine equiaxed grain structure with uniformly distributed second-phase particles (SPPs) can be obtained in 40% pre-deformed samples (Group A) but not in directly hot-rolled ones (Group B) after hot rolling. The initial SPPs diameter in Group A is also reduced. Noticeable differences in microstructural evolutions including the distribution and size of SPPs, grain size of matrix, and texture are observed between both groups. Reasons for such discrepancies are attributed to the defects (such as dislocations and interfaces) introduced during the pre-deformation and more preferred precipitation sites formed in Group A. The aging after the pre-deformation results in new slip systems activated during hot rolling, leading to more thorough refinement of grains. In addition, the growth of SPPs is interpreted by the Lifshitz–Slyozov–Wagner model.
DOI
10.1080/00223131.2015.1059776
Access Rights
free_to_read
Comments
Chen, L., Li, J., Zhang, Y., Lu, W., Zhang, L. C., Wang, L., & Zhang, D. (2016). Effect of low-temperature pre-deformation on precipitation behavior and microstructure of a Zr-Sn-Nb-Fe-Cu-O alloy during fabrication. Journal of Nuclear Science and Technology, 53(4), 496-507. Available here.