Nitrogen- and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants

Document Type

Journal Article

Publication Title

ACS Applied Materials & Interfaces


American Chemical Society


School of Engineering




Tian, W., Zhang, H., Duan, X., Sun, H., Tade, M. O., Ang, H. M., & Wang, S. (2016). Nitrogen-and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. ACS Applied Materials & Interfaces, 8(11), 7184-7193. Available here.


Heteroatom (nitrogen and sulfur)-codoped porous carbons (N-S-PCs) with high surface areas and hierarchically porous structures were successfully synthesized via direct pyrolysis of a mixture of glucose, sodium bicarbonate, and thiourea. The resulting N-S-PCs exhibit excellent adsorption abilities and are highly efficient for potassium persulfate activation when employed as catalysts for the oxidative degradation of sulfachloropyridazine (SCP) solutions. The adsorption capacities of N-S-PC-2 (which contains 4.51 atom % nitrogen and 0.22 atom % sulfur and exhibits SBET of 1608 m2 g−1) are 73, 7, and 3 times higher than those of graphene oxide, reduced graphene oxide, and commercial singlewalled carbon nanotube, respectively. For oxidation, the reaction rate constant of N-S-PC-2 is 0.28 min−1. This approach not only contributes to the large-scale production and application of high-quality catalysts in water remediation but also provides an innovative strategy for the production of heteroatom-doped PCs for energy applications.



Access Rights

subscription content