Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature

Document Type

Journal Article

Publication Title

Journal of Colloid and Interface Science

Publisher

Academic Press

Place of Publication

United States

School

School of Engineering

RAS ID

27689

Comments

Al-Anssari, S., Barifcani, A., Keshavarz, A., & Iglauer, S. (2018). Impact of nanoparticles on the CO2-brine interfacial tension at high pressure and temperature. Journal of colloid and interface science, 532, 136-142. Available here.

Abstract

Hypothesis: Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments: Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings: CO2/nanofluid γ was increased with temperature and decreased with increased pressure which is consistent with CO2/water γ. The hydrophilicity of NPs was the major factor; hydrophobic silica NPs significantly reduced γ at all investigated pressures and temperatures while hydrophilic NPs showed only minor influence on γ. Further, increased salinity which increased γ can also eliminate the influence of NPs on CO2/nanofluid γ. Hence, CO2/brine γ has low, but, reasonable values (higher than 20 mN/m) at carbon storage conditions even with the presence of hydrophilic NPs, therefore, CO2 storage can be considered in oil reservoirs after flooding with hydrophilic nanofluid. The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geosequestration projects..

DOI

10.1016/j.jcis.2018.07.115

Access Rights

subscription content

Share

 
COinS