Document Type

Journal Article

Publication Title

Materials & Design


Elsevier Ltd


School of Engineering




Rabadia, C. D., Liu, Y. J., Jawed, S. F., Wang, L., Li, Y. H., Zhang, X. H., ... & Zhang, L. C. (2018). Improved deformation behavior in Ti-Zr-Fe-Mn alloys comprising the C14 type Laves and β phases. Materials & Design, 160. 1059-1070.

Available here.


Laves phase alloys are promising materials for several structural applications, but the extreme brittleness is the predominant shortcoming of a Laves matrix. One potential solution to overcome this shortcoming is to alloy Laves matrix with some soft matrix. A group of Ti-35Zr-5Fe-xMn (x = 0, 2, 4, 6, 8 wt%) alloys was cast with an aim to improve deformation in Laves alloy compositions. The phase and microstructure analyses reveal dual phase matrices, including a β phase and a C14 type Laves phase in the investigated alloys. The mechanical properties such as yield strength, hardness and plastic strain for the investigated alloys are found to be significantly sensitive to volume fraction of the Laves phase. Ti-35Zr-5Fe shows impressive ultimate compressive strength (~1.7 GPa), yield strength (1138 MPa) and large plastic strain (23.2 %). The fracture mechanisms are dependent on the microstructure of the alloys. Additionally, the work-hardening ability of the investigated alloys have also been evaluated based on the analyses of slip band patterns formed around the micro-hardness indentations. Notably, the extreme brittleness is not encountered in all the Ti-35Zr-5Fe-xMn alloys and all exhibit very good compressive elongation including the maximum (32.5 %) in Ti-35Zr-5Fe.



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Engineering Commons