Document Type

Journal Article

Publication Title

Materials

ISSN

1996-1944

Volume

12

Issue

7

PubMed ID

30987339

Publisher

MDPI AG

School

School of Engineering

RAS ID

28722

Comments

Originally published as: Nili, M., Sasanipour, H., & Aslani, F. (2019). The effect of fine and coarse recycled aggregates on fresh and mechanical properties of self-compacting concrete. Materials, 12(7), Article 1120. Original publication available here

Abstract

Today, the use of recycled aggregates as a substitute for a part of the natural aggregates in concrete production is increasing. This approach is essential because the resources for natural aggregates are decreasing in the world. In the present study, the effects of recycled concrete aggregates as a partial replacement for fine (by 50%) and coarse aggregates (by 100%) were examined in the self-compacting concrete mixtures which contain air-entraining agents and silica fumes. Two series of self-compacting concrete mixes have been prepared. In the first series, fine and coarse recycled mixtures respectively with 50% and 100% replacement with air entraining agent were used. In the second series, fine recycled (with 50% replacement) and coarse recycled (with 100% replacement) were used with silica fume. The rheological properties of the self-compacting concrete (SCC) were determined using slump-flow and J-ring tests. The tests of compressive strength, tensile strength, and compressive stress-strain behavior were performed on both series. The results indicated that air-entraining agent and silica fume have an important role in stabilization of fresh properties of the mixtures. The results of tests indicated a decrease in compressive strength, modulus of elasticity, and energy absorption of concrete mixtures containing air entrained agent. Also, the results showed that complete replacement (100%) with coarse recycled material had no significant effect on mechanical strength, while replacement with 50% fine recycled material has reduced compressive strength, tensile strength, and energy absorption.

DOI

10.3390/ma12071120

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS