Document Type

Journal Article

Publication Title

Metals

Publisher

MDPI

School

School of Engineering

RAS ID

29252

Funders

The authors would like to acknowledge financial support provided by National Natural Science Foundation of China (51601075), China Postdoctoral Science Foundation Funded Project (2017M611751), open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (GXYSOF1801 and 2019GXYSOF01), and Jiangsu University of Science and Technology Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers.

Comments

Originally published as: Zhang, L., Chen, L. Y., Zhao, C., Liu, Y., & Zhang, L. (2019). Calculation of oxygen diffusion coefficients in oxide films formed on low-temperature annealed Zr alloys and their related corrosion behavior. Metals, 9(8).

Original article available here.

Abstract

The growth of oxide film, which results from the inward oxygen diffusion from a corrosive environment, is a critical consideration for the corrosion resistance of zirconium alloys. This work calculates the oxygen diffusion coefficients in the oxide films formed on zirconium alloys annealed at 400~500 °C and investigates the related corrosion behavior. The annealed samples have a close size for the second-phase particles but a distinctive hardness, indicating the difference in substrate conditions. The weight gain of all samples highly follows parabolic laws. The weight gain of the sample annealed at 400 °C has the fastest increase rate at the very beginning of the corrosion test, but its oxide film has the slowest growth rate as the corrosion proceeds. By contrast, the sample annealed at 500 °C shows the lowest weight gain but the highest corrosion rate constant. Such a corrosion behavior is attributed to the amount of defects existing in the oxide film formed on the annealed samples; fewer defects would provide a lower fraction of short-circuit diffusion in total diffusion, resulting in a lower diffusion coefficient of oxygen in the oxide film, thereby producing better corrosion resistance. This is consistent with the calculated diffusion coefficients of oxygen in the oxide films: 3.252 × 10−11 cm2/s, 3.464 × 10−11 cm2/s and 3.740 × 10−11 cm2/s for the samples annealed at 400 °C, 450 °C, and 500 °C, respectively.

DOI

10.3390/met9080850

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Engineering Commons

Share

 
COinS