Document Type

Journal Article

Publication Title

Nature Communications

Publisher

Springer Nature

School

School of Science / Centre for Marine Ecosystems Research

Funders

P.I.M. and C.E.L. were supported by an Australian Research Council Linkage Project (LP160100242). C.M.D. was supported by baseline funding from King Abdullah University of Science and Technology. T.K. and K.W. were supported by JSPS KAKENHI (18H04156) and the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan. B.D.E. was supported by Australian Research Council grants DP160100248 and LP150100519. D.A.S. was supported by the UK Natural Environment Research Council (NE/K008439/1), and D.K.J. was supported by the CARMA project (8021-00222B), funded by the Independent Research Fund Denmark. Funding was provided to P.M. by the Generalitat de Catalunya (MERS, 2017SGR 1588) and an Australian Research Council LIEF Project (LE170100219). This work is contributing to the ICTA ‘Unit of Excellence’ (MinECo, MDM2015-0552). O.S. was supported by an ARC DECRA (DE170101524). N.M. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MedShift project). N.B. was supported by the UK Research Councils under Natural Environment Research Council award NE/N013573/1. J.W.F. was supported by the US National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grant No. DEB-1237517. R.S. had the support of FCT, project FCT UID/MAR/00350/2018. I.E.H. was supported by Ramon y Cajal Fellowship RYC2014-14970, co-funded by the Conselleria d’Innovació, Recerca i Turisme of the Balearic Government and the Spanish Ministry of Economy, Industry and Competitiveness. The University of Dundee is a registered Scottish charity, no. 015096. J.P.M. was supported by the Smithsonian Institution and the National Science Foundation Long-Term Research in Environmental Biology Program (DEB-0950080, DEB-1457100, DEB-1557009).

Grant Number

ARC : LP160100242, ARC : DP160100248, ARC : LP150100519, ARC : LE170100219, ARC : DE170101524

Comments

Originally published as: Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Lovelock, C. E. (2019). The future of Blue Carbon science. Nature communications, 10(1), 1-13.

Original publication available here

Abstract

The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate change mitigation and adaptation has now reached international prominence. To help prioritise future research, we assembled leading experts in the field to agree upon the top-ten pending questions in BC science. Understanding how climate change affects carbon accumulation in mature BC ecosystems and during their restoration was a high priority. Controversial questions included the role of carbonate and macroalgae in BC cycling, and the degree to which greenhouse gases are released following disturbance of BC ecosystems. Scientists seek improved precision of the extent of BC ecosystems; techniques to determine BC provenance; understanding of the factors that influence sequestration in BC ecosystems, with the corresponding value of BC; and the management actions that are effective in enhancing this value. Overall this overview provides a comprehensive road map for the coming decades on future research in BC science.

DOI

10.1038/s41467-019-11693-w

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS