Utilization of N-glycosylation profiles as risk stratification biomarkers for suboptimal health status and metabolic syndrome in a Ghanaian population
Authors
Eric Adua, Edith Cowan UniversityFollow
Elham Memarian
Alyce Russell, Edith Cowan UniversityFollow
Irena Trbojević-Akmačić
Ivan Gudelj
Julija Jurić
Peter Roberts, Edith Cowan UniversityFollow
Gordan Lauc
Wei Wang, Edith Cowan UniversityFollow
Author Identifier
A. C. Russell
https://orcid.org/0000-0002-1667-7601
Peter Roberts
https://orcid.org/0000-0001-9591-3395
wei wang
Document Type
Journal Article
Publication Title
Biomarkers in Medicine
ISSN
1752-0371
Volume
13
Issue
15
First Page
1273
Last Page
1287
PubMed ID
31559833
Publisher
Future Medicine
School
School of Medical and Health Sciences
RAS ID
29824
Funders
This study was supported partially by the Joint Project of the Australian National Health & Medical Research Council and the National Natural Science Foundation of China (NHMRC APP1112767-NSFC 81561128020), National Natural Science Foundation of China (grant numbers 8177120753, 81673247 and 81573215), Edith Cowan University Collaboration Enhancement Scheme 2017 (round 1), the National Key Technology Support Program of China (2012BAI37B03), as well as by funding from the European Structural and Investments funds for ‘Croatian National Centre of Research Excellence in Personalized Healthcare’ (contract no.KK.01.1.1.01.0010) and funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska–Curie grant for project GlySign (contract no. 722095)
Grant Number
NHMRC Number : 1112767
Abstract
Aim: The study sought to apply N-glycosylation profiles to understand the interplay between suboptimal health status (SHS) and metabolic syndrome (MetS).
Materials & methods: In this study, 262 Ghanaians were recruited from May to July 2016. After completing a health survey, plasma samples were collected for clinical assessments while ultra performance liquid chromatography was used to measure plasma N-glycans.
Results: Four glycan peaks were found to predict case status (MetS and SHS) using a step-wise Akaike’s information criterion logistic regression model selection. This model yielded an area under the curve of MetS: 83.1% (95% CI: 78.0–88.1%) and SHS: 67.1% (60.6–73.7%).
Conclusion: Our results show that SHS is a significant, albeit modest, risk factor for MetS and N-glycan complexity was associated with MetS.
DOI
10.2217/bmm-2019-0005
Access Rights
subscription content
Comments
Adua, E., Memarian, E., Russell, A., Trbojević-Akmačić, I., Gudelj, I., Jurić, J., ... & Wang, W. (2019). Utilization of N-glycosylation profiles as risk stratification biomarkers for suboptimal health status and metabolic syndrome in a Ghanaian population. Biomarkers in Medicine, 13(15), 1273-1287.
Available here.