Document Type

Journal Article

Publication Title

Journal of Medical Internet Research






JMIR Publications


School of Nursing and Midwifery




National Institute of Nursing Research Touchmark Foundation Washinton State University Nursing Linblad Sholarship Funds


Fritz, R. L., Wilson, M., Dermody, G., Schmitter-Edgecombe, M., & Cook, D. J. (2020). Automated smart home assessment to support pain management: Multiple methods analysis. Journal of Medical Internet Research, 22(11), article e23943.


©Roschelle L Fritz, Marian Wilson, Gordana Dermody, Maureen Schmitter-Edgecombe, Diane J Cook. Objective: This study aimed to determine if a smart home can detect pain-related behaviors to perform automated assessment and support intervention for persons with chronic pain.Background: Poorly managed pain can lead to substance use disorders, depression, suicide, worsening health, and increased use of health services. Most pain assessments occur in clinical settings away from patients’ natural environments. Advances in smart home technology may allow observation of pain in the home setting. Smart homes recognizing human behaviors may be useful for quantifying functional pain interference, thereby creating new ways of assessing pain and supporting people living with pain.Methods: A multiple methods, secondary data analysis was conducted using historic ambient sensor data and weekly nursing assessment data from 11 independent older adults reporting pain across 1-2 years of smart home monitoring. A qualitative approach was used to interpret sensor-based data of 27 unique pain events to support clinician-guided training of a machine learning model. A periodogram was used to calculate circadian rhythm strength, and a random forest containing 100 trees was employed to train a machine learning model to recognize pain-related behaviors. The model extracted 550 behavioral markers for each sensor-based data segment. These were treated as both a binary classification problem (event, control) and a regression problem.Results: We found 13 clinically relevant behaviors, revealing 6 pain-related behavioral qualitative themes. Quantitative results were classified using a clinician-guided random forest technique that yielded a classification accuracy of 0.70, sensitivity of 0.72, specificity of 0.69, area under the receiver operating characteristic curve of 0.756, and area under the precision-recall curve of 0.777 in comparison to using standard anomaly detection techniques without clinician guidance (0.16 accuracy achieved; P < .001). The regression formulation achieved moderate correlation, with r=0.42.Conclusions: Findings of this secondary data analysis reveal that a pain-assessing smart home may recognize pain-related behaviors. Utilizing clinicians’ real-world knowledge when developing pain-assessing machine learning models improves the model’s performance. A larger study focusing on pain-related behaviors is warranted to improve and test model performance.



Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.