Date of Award


Degree Type


Degree Name

Master of Applied Science


Faculty of Science and Technology

First Advisor

Geoff Sutcliffe


This study examines the efficacy of six linear derivation strategies: (i) s-linear resolution, (ii) the ME procedure; (iii) t-linear resolution, (iv) SL -resolution, (v) the GC procedure, and (vi) SLM. The analysis is focused on the different restrictions and operations employed in each derivation strategy. The selection function, restrictive ancestor resolution, compulsory ancestor resolution on literals having atoms which are or become identical, compulsory merging operations, reuse of truncated literals, spreading of FALSE literals, no-tautologies resection, no two non-B-literals having identical atoms restriction, and the use of semantic information to trim irrelevant derivations from the search tree are the major features found In these six derivation strategies. Detecting loops and minimizing irrelevant derivations are the identified weak points of SLM. Two variations of SLM are suggested to rectify these problems. The ME procedure, SL-resolution, the GC procedure, SLM and one of the suggested variations of SLM were implemented using the Arity/Prolog compiler to produce the ME -TP, SL-TP, GC-TP, SLM-TP and SLM5-TP theorem provers respectively. In addition to the original features of each derivation strategy, the following search strategies were included in the implementations : the modified consecutively bounded depth-first search unit preference strategy, set of support strategy, pure literal elimination, tautologous clause elimination, selection function based on the computed weight of a literal, and a match check. The extension operation used by each theorem prover was extended to include subsumed unit extension and paramodulation. The performance of each theorem prover was determined. Experimental results were obtained using twenty four selected problems. The performance was measured in terms of the memory use and the execution time. A comparison of results between the five theorem provers using the, ME-TP as the basis was done. The results show that none of the theorem provers, consistently perform better than the others. Two of the selected problems were not proved by SL-TP and one problem was not proved by SLM-TP due to memory problems. The ME-TP, GC-TP and SLM5-TP proved all the selected problems. In some problems, the ME-TP and GC-TP performed better than SLM5-TP. However, the ME-TP and GC-TP had difficulties in some problems in which SLM5-TP performed well.