Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Faculty of Computing, Health and Science

First Advisor

Associate Professor Dr. S.P. Maj


This thesis consists of a series of internationally published, peer reviewed, journal and conference research papers that analyse the educational and training needs of undergraduate Information Technology (IT) students within the area of Computer and Network Technology (CNT) Education. Research by Maj et al has found that accredited computing science curricula can fail to meet the expectations of employers in the field of CNT: “It was found that none of these students could perform first line maintenance on a Personal Computer (PC) to a professional standard with due regard to safety, both to themselves and the equipment. Neither could they install communication cards, cables and network operating system or manage a population of networked PCs to an acceptable commercial standard without further extensive training. It is noteworthy that none of the students interviewed had ever opened a PC. It is significant that all those interviewed for this study had successfully completed all the units on computer architecture and communication engineering" (Maj, Robbins, Shaw, & Duley, 1998). The students' curricula at that time lacked units in which they gained hands-on experience in modern PC hardware or networking skills. This was despite the fact that their computing science course was level one accredited, the highest accreditation level offered by the Australian Computer Society (ACS). The results of the initial survey in Western Australia led to the introduction of two new units within the Computing Science Degree at Edith Cowan University (ECU), Computer Installation & Maintenance (CIM) and Network Installation & Maintenance (NIM) (Maj, Fetherston, Charlesworth, & Robbins, 1998). Uniquely within an Australian university context these new syllabi require students to work on real equipment. Such experience excludes digital circuit investigation, which is still a recommended approach by the Association for Computing Machinery (ACM) for computer architecture units (ACM, 2001, p.97). Instead, the CIM unit employs a top-down approach based initially upon students' everyday experiences, which is more in accordance with constructivist educational theory and practice. These papers propose an alternate model of IT education that helps to accommodate the educational and vocational needs of IT students in the context of continual rapid changes and developments in technology. The ACM have recognised the need for variation noting that: "There are many effective ways to organize a curriculum even for a particular set of goals and objectives" (Tucker et al., 1991, p.70). A possible major contribution to new knowledge of these papers relates to how high level abstract bandwidth (B-Node) models may contribute to the understanding of why and how computer and networking technology systems have developed over time. Because these models are de-coupled from the underlying technology, which is subject to rapid change, these models may help to future-proof student knowledge and understanding of the ongoing and future development of computer and networking systems. The de-coupling is achieved through abstraction based upon bandwidth or throughput rather than the specific implementation of the underlying technologies. One of the underlying problems is that computing systems tend to change faster than the ability of most educational institutions to respond. Abstraction and the use of B-Node models could help educational models to more quickly respond to changes in the field, and can also help to introduce an element of future-proofing in the education of IT students. The importance of abstraction has been noted by the ACM who state that: "Levels of Abstraction: the nature and use of abstraction in computing; the use of abstraction in managing complexity, structuring systems, hiding details, and capturing recurring patterns; the ability to represent an entity or system by abstractions having different levels of detail and specificity"(ACM, 1991b). Bloom et al note the importance of abstraction, listing under a heading of: “Knowledge of the universals and abstractions in a field” the objective: "Knowledge of the major schemes and patterns by which phenomena and ideas arc organized. These are large structures, theories, and generalizations which dominate a subject or field or problems. These are the highest levels of abstraction and complexity'' (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956, p. 203). Abstractions can be applied to computer and networking technology to help provide students with common fundamental concepts regardless of the particular underlying technological implementation to help avoid the rapid redundancy of a detailed knowledge of modem computer and networking technology implementation and hands-on skills acquisition. Again the ACM note that: “Enduring computing concepts include ideas that transcend any specific vendor, package or skill set... While skills are fleeting, fundamental concepts are enduring and provide long lasting benefits to students, critically important in a rapidly changing discipline" (ACM, 2001, p.70) These abstractions can also be reinforced by experiential learning to commercial practices. In this context, the other possibly major contribution of new knowledge provided by this thesis is an efficient, scalable and flexible model for assessing hands-on skills and understanding of IT students. This is a form of Competency-Based Assessment (CBA), which has been successfully tested as part of this research and subsequently implemented at ECU. This is the first time within this field that this specific type of research has been undertaken within the university sector within Australia. Hands-on experience and understanding can become outdated hence the need for future proofing provided via B-Nodes models. The three major research questions of this study are: •Is it possible to develop a new, high level abstraction model for use in CNT education? •Is it possible to have CNT curricula that are more directly relevant to both student and employer expectations without suffering from rapid obsolescence? •Can WI effective, efficient and meaningful assessment be undertaken to test students' hands-on skills and understandings? The ACM Special Interest Group on Data Communication (SJGCOMM) workshop report on Computer Networking, Curriculum Designs and Educational Challenges, note a list of teaching approaches: " ... the more 'hands-on' laboratory approach versus the more traditional in-class lecture-based approach; the bottom-up approach towards subject matter verus the top-down approach" (Kurose, Leibeherr, Ostermann, & Ott-Boisseau, 2002, para 1). Bandwidth considerations are approached from the PC hardware level and at each of the seven layers of the International Standards Organisation (ISO) Open Systems Interconnection (OSI) reference model. It is believed that this research is of significance to computing education. However, further research is needed.