Author Identifiers

Ali Baniasadi
ORCID: 0000-0001-6172-6807

Date of Award

2020

Degree Type

Thesis

Degree Name

Doctor of Philosophy

School

School of Engineering

First Advisor

Professor Daryoush Habibi

Second Advisor

Dr Waleed Al-Daedi

Third Advisor

Dr Mohammad Masoum

Abstract

The high penetration of renewable energy sources (RES), in particular, the rooftop photovoltaic (PV) systems in power systems, causes rapid ramps in power generation to supply load during peak-load periods. Residential and commercial buildings have considerable potential for providing load exibility by exploiting energy-e_cient devices like ground source heat pump (GSHP). The proper integration of PV systems with the GSHP could reduce power demand from demand-side. This research provides a practical attempt to integrate PV systems and GSHPs e_ectively into buildings and the grid. The multi-directional approach in this work requires an optimal control strategy to reduce energy cost and provide an opportunity for power trade-o_ or feed-in in the electricity market. In this study, some optimal control models are developed to overcome both the operational and technical constraints of demand-side management (DSM) and for optimum integration of RES.

This research focuses on the development of an optimal real-time thermal energy management system for smart homes to respond to DR for peak-load shifting. The intention is to manage the operation of a GSHP to produce the desired amount of thermal energy by controlling the volume and temperature of the stored water in the thermal energy storage (TES) while optimising the operation of the heat distributors to control indoor temperature.

This thesis proposes a new framework for optimal sizing design and real-time operation of energy storage systems in a residential building equipped with a PV system, heat pump (HP), and thermal and electrical energy storage systems. The results of this research demonstrate to rooftop PV system owners that investment in combined TSS and battery can be more profitable as this system can minimise life cycle costs.

This thesis also presents an analysis of the potential impact of residential HP systems into reserve capacity market. This research presents a business aggregate model for controlling residential HPs (RHPs) of a group of houses that energy aggregators can utilise to earn capacity credits. A control strategy is proposed based on a dynamic aggregate RHPs coupled with TES model and predicting trading intervals capacity requirements through forecasting demand and non-scheduled generation. RHPs coupled with TES are optimised to provide DSM reserve capacity. A rebound effect reduction method is proposed that reduces the peak rebound RHPs power.

Access Note

Chapter 7 is not included in this version of the thesis.

Available for download on Tuesday, December 07, 2021

Included in

Engineering Commons

Share

 
COinS